1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
use quote::quote_spanned;
use super::{
OperatorCategory, OperatorConstraints, OperatorWriteOutput, WriteContextArgs,
RANGE_0, RANGE_1,
};
/// > Arguments: An [async `Sink`](https://docs.rs/futures/latest/futures/sink/trait.Sink.html).
///
/// Consumes items by sending them to an [async `Sink`](https://docs.rs/futures/latest/futures/sink/trait.Sink.html).
/// A `Sink` is a thing into which values can be sent, asynchronously. For example, sending items
/// into a bounded channel.
///
/// Note this operator must be used within a Tokio runtime, and the Hydroflow program must be launched with `run_async`.
///
/// ```rustbook
/// # #[dfir_rs::main]
/// # async fn main() {
/// // In this example we use a _bounded_ channel for our `Sink`. This is for demonstration only,
/// // instead you should use [`dfir_rs::util::unbounded_channel`]. A bounded channel results in
/// // `Hydroflow` buffering items internally instead of within the channel. (We can't use
/// // unbounded here since unbounded channels are synchonous to write to and therefore not
/// // `Sink`s.)
/// let (send, recv) = tokio::sync::mpsc::channel::<usize>(5);
/// // `PollSender` adapts the send half of the bounded channel into a `Sink`.
/// let send = tokio_util::sync::PollSender::new(send);
///
/// let mut flow = dfir_rs::dfir_syntax! {
/// source_iter(0..10) -> dest_sink(send);
/// };
/// // Call `run_async()` to allow async events to propagate, run for one second.
/// tokio::time::timeout(std::time::Duration::from_secs(1), flow.run_async())
/// .await
/// .expect_err("Expected time out");
///
/// let mut recv = tokio_stream::wrappers::ReceiverStream::new(recv);
/// // Only 5 elements received due to buffer size.
/// // (Note that if we were using a multi-threaded executor instead of `current_thread` it would
/// // be possible for more items to be added as they're removed, resulting in >5 collected.)
/// let out: Vec<_> = dfir_rs::util::ready_iter(&mut recv).collect();
/// assert_eq!(&[0, 1, 2, 3, 4], &*out);
/// # }
/// ```
///
/// `Sink` is different from [`AsyncWrite`](https://docs.rs/futures/latest/futures/io/trait.AsyncWrite.html).
/// Instead of discrete values we send arbitrary streams of bytes into an `AsyncWrite` value. For
/// example, writings a stream of bytes to a file, a socket, or stdout.
///
/// To handle those situations we can use a codec from [`tokio_util::codec`](https://docs.rs/tokio-util/latest/tokio_util/codec/index.html).
/// These specify ways in which the byte stream is broken into individual items, such as with
/// newlines or with length delineation.
///
/// If we only want to write a stream of bytes without delineation we can use the [`BytesCodec`](https://docs.rs/tokio-util/latest/tokio_util/codec/struct.BytesCodec.html).
///
/// In this example we use a [`duplex`](https://docs.rs/tokio/latest/tokio/io/fn.duplex.html) as our `AsyncWrite` with a
/// `BytesCodec`.
///
/// ```rustbook
/// # #[dfir_rs::main]
/// # async fn main() {
/// use bytes::Bytes;
/// use tokio::io::AsyncReadExt;
///
/// // Like a channel, but for a stream of bytes instead of discrete objects.
/// let (asyncwrite, mut asyncread) = tokio::io::duplex(256);
/// // Now instead handle discrete byte strings by length-encoding them.
/// let sink = tokio_util::codec::FramedWrite::new(asyncwrite, tokio_util::codec::BytesCodec::new());
///
/// let mut flow = dfir_rs::dfir_syntax! {
/// source_iter([
/// Bytes::from_static(b"hello"),
/// Bytes::from_static(b"world"),
/// ]) -> dest_sink(sink);
/// };
/// tokio::time::timeout(std::time::Duration::from_secs(1), flow.run_async())
/// .await
/// .expect_err("Expected time out");
///
/// let mut buf = Vec::<u8>::new();
/// asyncread.read_buf(&mut buf).await.unwrap();
/// assert_eq!(b"helloworld", &*buf);
/// # }
/// ```
pub const DEST_SINK: OperatorConstraints = OperatorConstraints {
name: "dest_sink",
categories: &[OperatorCategory::Sink],
hard_range_inn: RANGE_1,
soft_range_inn: RANGE_1,
hard_range_out: RANGE_0,
soft_range_out: RANGE_0,
num_args: 1,
persistence_args: RANGE_0,
type_args: RANGE_0,
is_external_input: false,
has_singleton_output: false,
flo_type: None,
ports_inn: None,
ports_out: None,
input_delaytype_fn: |_| None,
write_fn: |wc @ &WriteContextArgs {
root,
hydroflow,
op_span,
ident,
is_pull,
arguments,
..
},
_| {
assert!(!is_pull);
let sink_arg = &arguments[0];
let send_ident = wc.make_ident("item_send");
let recv_ident = wc.make_ident("item_recv");
let write_prologue = quote_spanned! {op_span=>
let (#send_ident, #recv_ident) = #root::tokio::sync::mpsc::unbounded_channel();
{
/// Function is needed so `Item` is so no ambiguity for what `Item` is used
/// when calling `.flush()`.
async fn sink_feed_flush<Sink, Item>(
mut recv: #root::tokio::sync::mpsc::UnboundedReceiver<Item>,
mut sink: Sink,
) where
Sink: ::std::marker::Unpin + #root::futures::Sink<Item>,
Sink::Error: ::std::fmt::Debug,
{
use #root::futures::SinkExt;
while let Some(item) = recv.recv().await {
sink.feed(item)
.await
.expect("Error processing async sink item.");
while let Ok(item) = recv.try_recv() {
sink.feed(item)
.await
.expect("Error processing async sink item.");
}
sink.flush().await.expect("Failed to flush sink.");
}
}
#hydroflow
.request_task(sink_feed_flush(#recv_ident, #sink_arg));
}
};
let write_iterator = quote_spanned! {op_span=>
let #ident = #root::pusherator::for_each::ForEach::new(|item| {
if let Err(err) = #send_ident.send(item) {
panic!("Failed to send async write item for processing.: {}", err);
}
});
};
Ok(OperatorWriteOutput {
write_prologue,
write_iterator,
..Default::default()
})
},
};