1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
use proc_macro2::Ident;
use quote::{quote, quote_spanned, ToTokens};
use syn::spanned::Spanned;
use syn::{PathArguments, PathSegment, Token, Type, TypePath};
use super::{
OpInstGenerics, OperatorCategory, OperatorConstraints, OperatorInstance,
OperatorWriteOutput, PortIndexValue, PortListSpec, WriteContextArgs, RANGE_0, RANGE_1,
};
use crate::diagnostic::{Diagnostic, Level};
use crate::graph::change_spans;
/// > Generic Argument: A enum type which has `#[derive(DemuxEnum)]`. Must match the items in the input stream.
///
/// Takes an input stream of enum instances and splits them into their variants.
///
/// ```rustdoc
/// #[derive(DemuxEnum)]
/// enum Shape {
/// Square(f64),
/// Rectangle(f64, f64),
/// Circle { r: f64 },
/// Triangle { w: f64, h: f64 }
/// }
///
/// let mut df = dfir_syntax! {
/// my_demux = source_iter([
/// Shape::Square(9.0),
/// Shape::Rectangle(10.0, 8.0),
/// Shape::Circle { r: 5.0 },
/// Shape::Triangle { w: 12.0, h: 13.0 },
/// ]) -> demux_enum::<Shape>();
///
/// my_demux[Square] -> map(|s| s * s) -> out;
/// my_demux[Circle] -> map(|(r,)| std::f64::consts::PI * r * r) -> out;
/// my_demux[Rectangle] -> map(|(w, h)| w * h) -> out;
/// my_demux[Circle] -> map(|(w, h)| 0.5 * w * h) -> out;
///
/// out = union() -> for_each(|area| println!("Area: {}", area));
/// };
/// df.run_available();
/// ```
pub const DEMUX_ENUM: OperatorConstraints = OperatorConstraints {
name: "demux_enum",
categories: &[OperatorCategory::MultiOut],
hard_range_inn: RANGE_1,
soft_range_inn: RANGE_1,
hard_range_out: &(..),
soft_range_out: &(..),
num_args: 0,
persistence_args: RANGE_0,
type_args: RANGE_1,
is_external_input: false,
has_singleton_output: false,
flo_type: None,
ports_inn: None,
ports_out: Some(|| PortListSpec::Variadic),
input_delaytype_fn: |_| None,
write_fn: |&WriteContextArgs {
root,
op_span,
ident,
inputs,
outputs,
is_pull,
op_name,
op_inst:
OperatorInstance {
output_ports,
generics: OpInstGenerics { type_args, .. },
..
},
..
},
diagnostics| {
let enum_type = &type_args[0];
// Port idents supplied via port connections in the surface syntax.
let port_idents: Vec<_> = output_ports
.iter()
.filter_map(|output_port| {
let PortIndexValue::Path(port_expr) = output_port else {
diagnostics.push(Diagnostic::spanned(
output_port.span(),
Level::Error,
format!(
"Output port from `{}(..)` must be specified and must be a valid identifier.",
op_name,
),
));
return None;
};
let port_ident = syn::parse2::<Ident>(quote! { #port_expr })
.map_err(|err| diagnostics.push(err.into()))
.ok()?;
Some(port_ident)
})
.collect();
// The entire purpose of this closure and match statement is to generate readable error messages:
// "missing match arm: `Variant(_)` not covered."
// Or "no variant named `Variant` found for enum `Shape`"
// Note this uses the `enum_type`'s span.
let enum_type_turbofish = ensure_turbofish(enum_type);
let port_variant_check_match_arms = port_idents
.iter()
.map(|port_ident| {
let enum_type_turbofish =
change_spans(enum_type_turbofish.to_token_stream(), port_ident.span());
quote_spanned! {port_ident.span()=>
#enum_type_turbofish::#port_ident { .. } => ()
}
})
.collect::<Vec<_>>();
let root_span = change_spans(root.clone(), enum_type.span());
let write_prologue = quote_spanned! {enum_type.span()=>
let _ = |__val: #enum_type| {
fn check_impl_demux_enum<T: ?Sized + #root_span::util::demux_enum::DemuxEnumBase>(_: &T) {}
check_impl_demux_enum(&__val);
match __val {
#(
#port_variant_check_match_arms,
)*
};
};
};
let write_iterator = if 1 == outputs.len() {
// Use `enum_type`'s span.
let map_fn = quote_spanned! {enum_type.span()=>
<#enum_type as #root::util::demux_enum::SingleVariant>::single_variant
};
if is_pull {
let input = &inputs[0];
quote_spanned! {op_span=>
let #ident = #input.map(#map_fn);
}
} else {
let output = &outputs[0];
quote_spanned! {op_span=>
let #ident = #root::pusherator::map::Map::new(#map_fn, #output);
}
}
} else {
assert!(!is_pull);
let mut sort_permute: Vec<_> = (0..port_idents.len()).collect();
sort_permute.sort_by_key(|&i| &port_idents[i]);
let sorted_outputs = sort_permute.iter().map(|&i| &outputs[i]);
quote_spanned! {op_span=>
let #ident = {
let mut __outputs = ( #( #sorted_outputs, )* );
#root::pusherator::for_each::ForEach::new(move |__item: #enum_type| {
#root::util::demux_enum::DemuxEnum::demux_enum(
__item,
&mut __outputs,
);
})
};
}
};
Ok(OperatorWriteOutput {
write_prologue,
write_iterator,
..Default::default()
})
},
};
/// Ensure enum type has double colon turbofish syntax.
/// `my_mod::MyType<MyGeneric>` becomes `my_mod::MyType::<MyGeneric>`.
fn ensure_turbofish(ty: &Type) -> Type {
let mut ty = ty.clone();
// If type is path.
if let Type::Path(TypePath { qself: _, path }) = &mut ty {
// If path ends in angle bracketed generics.
if let Some(PathSegment {
ident: _,
arguments: PathArguments::AngleBracketed(angle_bracketed),
}) = path.segments.last_mut()
{
// Ensure the final turbofish double-colon is set.
angle_bracketed.colon2_token = Some(<Token![::]>::default());
}
};
ty
}