1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
#![cfg_attr(
    feature = "diagnostics",
    feature(proc_macro_diagnostic, proc_macro_span, proc_macro_def_site)
)]

use std::path::PathBuf;

use hydroflow_lang::diagnostic::{Diagnostic, Level};
use hydroflow_lang::graph::{build_hfcode, partition_graph, FlatGraphBuilder};
use hydroflow_lang::parse::HfCode;
use proc_macro2::{Ident, Literal, Span};
use quote::{format_ident, quote};
use syn::{
    parse_macro_input, parse_quote, Attribute, Fields, GenericParam, ItemEnum, LitStr, Variant,
    WherePredicate,
};

/// Create a Hydroflow instance using Hydroflow's custom "surface syntax."
///
/// For example usage, take a look at the [`surface_*` tests in the `tests` folder](https://github.com/hydro-project/hydroflow/tree/main/hydroflow/tests)
/// or the [`examples` folder](https://github.com/hydro-project/hydroflow/tree/main/hydroflow/examples)
/// in the [Hydroflow repo](https://github.com/hydro-project/hydroflow).
// TODO(mingwei): rustdoc examples inline.
#[proc_macro]
pub fn hydroflow_syntax(input: proc_macro::TokenStream) -> proc_macro::TokenStream {
    hydroflow_syntax_internal(input, Some(Level::Help))
}

/// [`hydroflow_syntax!`] but will not emit any diagnostics (errors, warnings, etc.).
///
/// Used for testing, users will want to use [`hydroflow_syntax!`] instead.
#[proc_macro]
pub fn hydroflow_syntax_noemit(input: proc_macro::TokenStream) -> proc_macro::TokenStream {
    hydroflow_syntax_internal(input, None)
}

fn root() -> proc_macro2::TokenStream {
    use std::env::{var as env_var, VarError};

    let hydroflow_crate = proc_macro_crate::crate_name("hydroflow")
        .expect("hydroflow should be present in `Cargo.toml`");
    match hydroflow_crate {
        proc_macro_crate::FoundCrate::Itself => {
            if Err(VarError::NotPresent) == env_var("CARGO_BIN_NAME")
                && Err(VarError::NotPresent) != env_var("CARGO_PRIMARY_PACKAGE")
                && Ok("hydroflow") == env_var("CARGO_CRATE_NAME").as_deref()
            {
                // In the crate itself, including unit tests.
                quote! { crate }
            } else {
                // In an integration test, example, bench, etc.
                quote! { ::hydroflow }
            }
        }
        proc_macro_crate::FoundCrate::Name(name) => {
            let ident: Ident = Ident::new(&name, Span::call_site());
            quote! { ::#ident }
        }
    }
}

// May panic
fn macro_invocation_path() -> PathBuf {
    #[cfg(feature = "diagnostics")]
    {
        proc_macro::Span::call_site().source_file().path()
    }
    #[cfg(not(feature = "diagnostics"))]
    {
        std::env::current_dir().unwrap_or_else(|_| {
            PathBuf::from(
                std::env::var("CARGO_MANIFEST_DIR")
                    .expect("Failed to determine fallback env var CARGO_MANIFEST_DIR."),
            )
        })
    }
}

fn hydroflow_syntax_internal(
    input: proc_macro::TokenStream,
    min_diagnostic_level: Option<Level>,
) -> proc_macro::TokenStream {
    let macro_invocation_path = macro_invocation_path();

    let input = parse_macro_input!(input as HfCode);
    let root = root();
    let (graph_code_opt, diagnostics) = build_hfcode(input, &root, macro_invocation_path);
    let tokens = graph_code_opt
        .map(|(_graph, code)| code)
        .unwrap_or_else(|| quote! { #root::scheduled::graph::Hydroflow::new() });

    let diagnostics = diagnostics
        .iter()
        .filter(|diag: &&Diagnostic| Some(diag.level) <= min_diagnostic_level);

    #[cfg(feature = "diagnostics")]
    {
        diagnostics.for_each(Diagnostic::emit);
        tokens.into()
    }

    #[cfg(not(feature = "diagnostics"))]
    {
        let diagnostics = diagnostics.map(Diagnostic::to_tokens);
        quote! {
            {
                #(
                    #diagnostics
                )*
                #tokens
            }
        }
        .into()
    }
}

/// Parse Hydroflow "surface syntax" without emitting code.
///
/// Used for testing, users will want to use [`hydroflow_syntax!`] instead.
#[proc_macro]
pub fn hydroflow_parser(input: proc_macro::TokenStream) -> proc_macro::TokenStream {
    let macro_invocation_path = macro_invocation_path();

    let input = parse_macro_input!(input as HfCode);

    let flat_graph_builder = FlatGraphBuilder::from_hfcode(input, macro_invocation_path);
    let (mut flat_graph, _uses, mut diagnostics) = flat_graph_builder.build();
    if !diagnostics.iter().any(Diagnostic::is_error) {
        if let Err(diagnostic) = flat_graph.merge_modules() {
            diagnostics.push(diagnostic);
        } else {
            let flat_mermaid = flat_graph.mermaid_string_flat();

            let part_graph = partition_graph(flat_graph).unwrap();
            let part_mermaid = part_graph.to_mermaid(&Default::default());

            let lit0 = Literal::string(&flat_mermaid);
            let lit1 = Literal::string(&part_mermaid);

            return quote! {
                {
                    println!("{}\n\n{}\n", #lit0, #lit1);
                }
            }
            .into();
        }
    }

    diagnostics.iter().for_each(Diagnostic::emit);
    quote! {}.into()
}

#[doc(hidden)]
#[proc_macro]
pub fn surface_booktest_operators(input: proc_macro::TokenStream) -> proc_macro::TokenStream {
    assert!(input.is_empty(), "Input must be empty");
    let each = hydroflow_lang::graph::ops::OPERATORS.iter().map(|op| {
        let op_ident = Ident::new(op.name, Span::call_site());
        let op_filename = format!("../../docs/docgen/{}.md", op.name);
        let lit_filename = LitStr::new(&op_filename, Span::call_site());
        quote! {
            #[doc = include_str!(#lit_filename)]
            mod #op_ident {}
        }
    });
    let out = quote! {
        #( #each )*
    };
    out.into()
}

fn hydroflow_wrap(item: proc_macro::TokenStream, attribute: Attribute) -> proc_macro::TokenStream {
    use quote::ToTokens;

    let root = root();

    let mut input: syn::ItemFn = match syn::parse(item) {
        Ok(it) => it,
        Err(e) => return e.into_compile_error().into(),
    };

    let statements = input.block.stmts;

    input.block.stmts = parse_quote!(
        #root::tokio::task::LocalSet::new().run_until(async {
            #( #statements )*
        }).await
    );

    input.attrs.push(attribute);

    input.into_token_stream().into()
}

/// Checks that the given closure is a morphism. For now does nothing.
#[proc_macro]
pub fn morphism(item: proc_macro::TokenStream) -> proc_macro::TokenStream {
    // TODO(mingwei): some sort of code analysis?
    item
}

/// Checks that the given closure is a monotonic function. For now does nothing.
#[proc_macro]
pub fn monotonic_fn(item: proc_macro::TokenStream) -> proc_macro::TokenStream {
    // TODO(mingwei): some sort of code analysis?
    item
}

#[proc_macro_attribute]
pub fn hydroflow_test(
    args: proc_macro::TokenStream,
    item: proc_macro::TokenStream,
) -> proc_macro::TokenStream {
    let root = root();
    let args_2: proc_macro2::TokenStream = args.into();

    hydroflow_wrap(
        item,
        parse_quote!(
            #[#root::tokio::test(flavor = "current_thread", #args_2)]
        ),
    )
}

#[proc_macro_attribute]
pub fn hydroflow_main(
    _: proc_macro::TokenStream,
    item: proc_macro::TokenStream,
) -> proc_macro::TokenStream {
    let root = root();

    hydroflow_wrap(
        item,
        parse_quote!(
            #[#root::tokio::main(flavor = "current_thread")]
        ),
    )
}

#[proc_macro_derive(DemuxEnum)]
pub fn derive_answer_fn(item: proc_macro::TokenStream) -> proc_macro::TokenStream {
    let root = root();

    let ItemEnum {
        ident: item_ident,
        generics,
        variants,
        ..
    } = parse_macro_input!(item as ItemEnum);

    // Sort variants alphabetically.
    let mut variants = variants.into_iter().collect::<Vec<_>>();
    variants.sort_by(|a, b| a.ident.cmp(&b.ident));

    let variant_pusherator_generics = variants
        .iter()
        .map(|variant| format_ident!("__Pusherator{}", variant.ident))
        .collect::<Vec<_>>();
    let variant_pusherator_localvars = variants
        .iter()
        .map(|variant| {
            format_ident!(
                "__pusherator_{}",
                variant.ident.to_string().to_lowercase(),
                span = variant.ident.span()
            )
        })
        .collect::<Vec<_>>();
    let variant_output_types = variants
        .iter()
        .map(|variant| match &variant.fields {
            Fields::Named(fields) => {
                let field_types = fields.named.iter().map(|field| &field.ty);
                quote! {
                    ( #( #field_types, )* )
                }
            }
            Fields::Unnamed(fields) => {
                let field_types = fields.unnamed.iter().map(|field| &field.ty);
                quote! {
                    ( #( #field_types, )* )
                }
            }
            Fields::Unit => quote!(()),
        })
        .collect::<Vec<_>>();

    let mut full_generics = generics.clone();
    full_generics.params.extend(
        variant_pusherator_generics
            .iter()
            .map::<GenericParam, _>(|ident| parse_quote!(#ident)),
    );
    full_generics.make_where_clause().predicates.extend(
        variant_pusherator_generics
            .iter()
            .zip(variant_output_types.iter())
            .map::<WherePredicate, _>(|(pusherator_generic, output_type)| {
                parse_quote! {
                    #pusherator_generic: #root::pusherator::Pusherator<Item = #output_type>
                }
            }),
    );

    let (impl_generics_item, ty_generics, where_clause_item) = generics.split_for_impl();
    let (impl_generics, _ty_generics, where_clause) = full_generics.split_for_impl();

    let variant_pats = variants
        .iter()
        .zip(variant_pusherator_localvars.iter())
        .map(|(variant, pushvar)| {
            let Variant { ident, fields, .. } = variant;
            let (fields_pat, push_item) = field_pattern_item(fields);
            quote! {
                Self::#ident #fields_pat => #pushvar.give(#push_item)
            }
        });

    let single_impl = (1 == variants.len()).then(|| {
        let Variant { ident, fields, .. } = variants.first().unwrap();
        let (fields_pat, push_item) = field_pattern_item(fields);
        let out_type = variant_output_types.first().unwrap();
        quote! {
            impl #impl_generics_item #root::util::demux_enum::SingleVariant
                for #item_ident #ty_generics #where_clause_item
            {
                type Output = #out_type;
                fn single_variant(self) -> Self::Output {
                    match self {
                        Self::#ident #fields_pat => #push_item,
                    }
                }
            }
        }
    });

    quote! {
        impl #impl_generics #root::util::demux_enum::DemuxEnum<( #( #variant_pusherator_generics, )* )>
            for #item_ident #ty_generics #where_clause
        {
            fn demux_enum(
                self,
                ( #( #variant_pusherator_localvars, )* ):
                    &mut ( #( #variant_pusherator_generics, )* )
            ) {
                match self {
                    #( #variant_pats, )*
                }
            }
        }

        impl #impl_generics_item #root::util::demux_enum::DemuxEnumBase
            for #item_ident #ty_generics #where_clause_item {}

        #single_impl
    }
    .into()
}

/// (fields pattern, push item expr)
fn field_pattern_item(fields: &Fields) -> (proc_macro2::TokenStream, proc_macro2::TokenStream) {
    let idents = fields
        .iter()
        .enumerate()
        .map(|(i, field)| {
            field
                .ident
                .clone()
                .unwrap_or_else(|| format_ident!("_{}", i))
        })
        .collect::<Vec<_>>();
    let (fields_pat, push_item) = match fields {
        Fields::Named(_) => (quote!( { #( #idents, )* } ), quote!( ( #( #idents, )* ) )),
        Fields::Unnamed(_) => (quote!( ( #( #idents ),* ) ), quote!( ( #( #idents, )* ) )),
        Fields::Unit => (quote!(), quote!(())),
    };
    (fields_pat, push_item)
}