1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
//! Graph representation stages for Hydroflow graphs.

use std::borrow::Cow;
use std::hash::Hash;

use proc_macro2::{Ident, Span, TokenStream};
use quote::ToTokens;
use serde::{Deserialize, Serialize};
use slotmap::new_key_type;
use syn::punctuated::Punctuated;
use syn::spanned::Spanned;
use syn::{Expr, ExprPath, GenericArgument, Token, Type};

use self::ops::{OperatorConstraints, Persistence};
use crate::diagnostic::{Diagnostic, Level};
use crate::parse::{HfCode, IndexInt, Operator, PortIndex, Ported};
use crate::pretty_span::PrettySpan;

mod di_mul_graph;
mod eliminate_extra_unions_tees;
mod flat_graph_builder;
mod flat_to_partitioned;
mod graph_write;
mod hydroflow_graph;
mod hydroflow_graph_debugging;

use std::fmt::Display;

pub use di_mul_graph::DiMulGraph;
pub use eliminate_extra_unions_tees::eliminate_extra_unions_tees;
pub use flat_graph_builder::FlatGraphBuilder;
pub use flat_to_partitioned::partition_graph;
pub use hydroflow_graph::{DfirGraph, WriteConfig, WriteGraphType};

pub mod graph_algorithms;
pub mod ops;

new_key_type! {
    /// ID to identify a node (operator or handoff) in [`DfirGraph`].
    pub struct GraphNodeId;

    /// ID to identify an edge.
    pub struct GraphEdgeId;

    /// ID to identify a subgraph in [`DfirGraph`].
    pub struct GraphSubgraphId;

    /// ID to identify a loop block in [`DfirGraph`].
    pub struct GraphLoopId;
}

/// Context identifier as a string.
const CONTEXT: &str = "context";
/// Hydroflow identifier as a string.
const HYDROFLOW: &str = "df";

const HANDOFF_NODE_STR: &str = "handoff";
const MODULE_BOUNDARY_NODE_STR: &str = "module_boundary";

mod serde_syn {
    use serde::{Deserialize, Deserializer, Serializer};

    pub fn serialize<S, T>(value: &T, serializer: S) -> Result<S::Ok, S::Error>
    where
        S: Serializer,
        T: quote::ToTokens,
    {
        serializer.serialize_str(&value.to_token_stream().to_string())
    }

    pub fn deserialize<'de, D, T>(deserializer: D) -> Result<T, D::Error>
    where
        D: Deserializer<'de>,
        T: syn::parse::Parse,
    {
        let s = String::deserialize(deserializer)?;
        syn::parse_str(&s).map_err(<D::Error as serde::de::Error>::custom)
    }
}

#[derive(Clone, Debug, Serialize, Deserialize, PartialOrd, Ord, PartialEq, Eq)]
struct Varname(#[serde(with = "serde_syn")] pub Ident);

/// A node, corresponding to an operator or a handoff.
#[derive(Clone, Serialize, Deserialize)]
pub enum GraphNode {
    /// An operator.
    Operator(#[serde(with = "serde_syn")] Operator),
    /// A handoff point, used between subgraphs (or within a subgraph to break a cycle).
    Handoff {
        /// The span of the input into the handoff.
        #[serde(skip, default = "Span::call_site")]
        src_span: Span,
        /// The span of the output out of the handoff.
        #[serde(skip, default = "Span::call_site")]
        dst_span: Span,
    },

    /// Module Boundary, used for importing modules. Only exists prior to partitioning.
    ModuleBoundary {
        /// If this module is an input or output boundary.
        input: bool,

        /// The span of the import!() expression that imported this module.
        /// The value of this span when the ModuleBoundary node is still inside the module is Span::call_site()
        /// TODO: This could one day reference into the module file itself?
        #[serde(skip, default = "Span::call_site")]
        import_expr: Span,
    },
}
impl GraphNode {
    /// Return the node as a human-readable string.
    pub fn to_pretty_string(&self) -> Cow<'static, str> {
        match self {
            GraphNode::Operator(op) => op.to_pretty_string().into(),
            GraphNode::Handoff { .. } => HANDOFF_NODE_STR.into(),
            GraphNode::ModuleBoundary { .. } => MODULE_BOUNDARY_NODE_STR.into(),
        }
    }

    /// Return the name of the node as a string, excluding parenthesis and op source code.
    pub fn to_name_string(&self) -> Cow<'static, str> {
        match self {
            GraphNode::Operator(op) => op.name_string().into(),
            GraphNode::Handoff { .. } => HANDOFF_NODE_STR.into(),
            GraphNode::ModuleBoundary { .. } => MODULE_BOUNDARY_NODE_STR.into(),
        }
    }

    /// Return the source code span of the node (for operators) or input/otput spans for handoffs.
    pub fn span(&self) -> Span {
        match self {
            Self::Operator(op) => op.span(),
            &Self::Handoff { src_span, dst_span } => src_span.join(dst_span).unwrap_or(src_span),
            Self::ModuleBoundary { import_expr, .. } => *import_expr,
        }
    }
}
impl std::fmt::Debug for GraphNode {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        match self {
            Self::Operator(operator) => {
                write!(f, "Node::Operator({} span)", PrettySpan(operator.span()))
            }
            Self::Handoff { .. } => write!(f, "Node::Handoff"),
            Self::ModuleBoundary { input, .. } => {
                write!(f, "Node::ModuleBoundary{{input: {}}}", input)
            }
        }
    }
}

/// Meta-data relating to operators which may be useful throughout the compilation process.
///
/// This data can be generated from the graph, but it is useful to have it readily available
/// pre-computed as many algorithms use the same info. Stuff like port names, arguments, and the
/// [`OperatorConstraints`] for the operator.
///
/// Because it is derived from the graph itself, there can be "cache invalidation"-esque issues
/// if this data is not kept in sync with the graph.
#[derive(Clone, Debug)]
pub struct OperatorInstance {
    /// Name of the operator (will match [`OperatorConstraints::name`]).
    pub op_constraints: &'static OperatorConstraints,
    /// Port values used as this operator's input.
    pub input_ports: Vec<PortIndexValue>,
    /// Port values used as this operator's output.
    pub output_ports: Vec<PortIndexValue>,
    /// Singleton references within the operator arguments.
    pub singletons_referenced: Vec<Ident>,

    /// Generic arguments.
    pub generics: OpInstGenerics,
    /// Arguments provided by the user into the operator as arguments.
    /// I.e. the `a, b, c` in `-> my_op(a, b, c) -> `.
    ///
    /// These arguments do not include singleton postprocessing codegen. Instead use
    /// [`ops::WriteContextArgs::arguments`].
    pub arguments_pre: Punctuated<Expr, Token![,]>,
    /// Unparsed arguments, for singleton parsing.
    pub arguments_raw: TokenStream,
}

/// Operator generic arguments, split into specific categories.
#[derive(Clone, Debug)]
pub struct OpInstGenerics {
    /// Operator generic (type or lifetime) arguments.
    pub generic_args: Option<Punctuated<GenericArgument, Token![,]>>,
    /// Lifetime persistence arguments. Corresponds to a prefix of [`Self::generic_args`].
    pub persistence_args: Vec<Persistence>,
    /// Type persistence arguments. Corersponds to a (suffix) of [`Self::generic_args`].
    pub type_args: Vec<Type>,
}

/// Gets the generic arguments for the operator.
///
/// This helper method is useful due to the special handling of persistence lifetimes (`'static`,
/// `'tick`, `'mutable`) which must come before other generic parameters.
pub fn get_operator_generics(
    diagnostics: &mut Vec<Diagnostic>,
    operator: &Operator,
) -> OpInstGenerics {
    // Generic arguments.
    let generic_args = operator.type_arguments().cloned();
    let persistence_args = generic_args.iter().flatten().map_while(|generic_arg| match generic_arg {
            GenericArgument::Lifetime(lifetime) => {
                match &*lifetime.ident.to_string() {
                    "static" => Some(Persistence::Static),
                    "tick" => Some(Persistence::Tick),
                    "mutable" => Some(Persistence::Mutable),
                    _ => {
                        diagnostics.push(Diagnostic::spanned(
                            generic_arg.span(),
                            Level::Error,
                            format!("Unknown lifetime generic argument `'{}`, expected `'tick`, `'static`, or `'mutable`.", lifetime.ident),
                        ));
                        // TODO(mingwei): should really keep going and not short circuit?
                        None
                    }
                }
            },
            _ => None,
        }).collect::<Vec<_>>();
    let type_args = generic_args
        .iter()
        .flatten()
        .skip(persistence_args.len())
        .map_while(|generic_arg| match generic_arg {
            GenericArgument::Type(typ) => Some(typ),
            _ => None,
        })
        .cloned()
        .collect::<Vec<_>>();

    OpInstGenerics {
        generic_args,
        persistence_args,
        type_args,
    }
}

/// Push, Pull, Comp, or Hoff polarity.
#[derive(Clone, Copy, Debug, PartialEq, Eq, PartialOrd, Ord, Serialize, Deserialize)]
pub enum Color {
    /// Pull (green)
    Pull,
    /// Push (blue)
    Push,
    /// Computation (yellow)
    Comp,
    /// Handoff (grey) -- not a color for operators, inserted between subgraphs.
    Hoff,
}

/// Helper struct for [`PortIndex`] which keeps span information for elided ports.
#[derive(Clone, Debug, Serialize, Deserialize)]
pub enum PortIndexValue {
    /// An integer value: `[0]`, `[1]`, etc. Can be negative although we don't use that (2023-08-16).
    Int(#[serde(with = "serde_syn")] IndexInt),
    /// A name or path. `[pos]`, `[neg]`, etc. Can use `::` separators but we don't use that (2023-08-16).
    Path(#[serde(with = "serde_syn")] ExprPath),
    /// Elided, unspecified port. We have this variant, rather than wrapping in `Option`, in order
    /// to preserve the `Span` information.
    Elided(#[serde(skip)] Option<Span>),
}
impl PortIndexValue {
    /// For a [`Ported`] value like `[port_in]name[port_out]`, get the `port_in` and `port_out` as
    /// [`PortIndexValue`]s.
    pub fn from_ported<Inner>(ported: Ported<Inner>) -> (Self, Inner, Self)
    where
        Inner: Spanned,
    {
        let ported_span = Some(ported.inner.span());
        let port_inn = ported
            .inn
            .map(|idx| idx.index.into())
            .unwrap_or_else(|| Self::Elided(ported_span));
        let inner = ported.inner;
        let port_out = ported
            .out
            .map(|idx| idx.index.into())
            .unwrap_or_else(|| Self::Elided(ported_span));
        (port_inn, inner, port_out)
    }

    /// Returns `true` if `self` is not [`PortIndexValue::Elided`].
    pub fn is_specified(&self) -> bool {
        !matches!(self, Self::Elided(_))
    }

    /// Return `Err(self)` if there is a conflict.
    pub fn combine(self, other: Self) -> Result<Self, Self> {
        if self.is_specified() {
            if other.is_specified() {
                Err(self)
            } else {
                Ok(self)
            }
        } else {
            Ok(other)
        }
    }

    /// Formats self as a human-readable string for error messages.
    pub fn as_error_message_string(&self) -> String {
        match self {
            PortIndexValue::Int(n) => format!("`{}`", n.value),
            PortIndexValue::Path(path) => format!("`{}`", path.to_token_stream()),
            PortIndexValue::Elided(_) => "<elided>".to_owned(),
        }
    }

    /// Returns the span of this port value.
    pub fn span(&self) -> Span {
        match self {
            PortIndexValue::Int(x) => x.span(),
            PortIndexValue::Path(x) => x.span(),
            PortIndexValue::Elided(span) => span.unwrap_or_else(Span::call_site),
        }
    }
}
impl From<PortIndex> for PortIndexValue {
    fn from(value: PortIndex) -> Self {
        match value {
            PortIndex::Int(x) => Self::Int(x),
            PortIndex::Path(x) => Self::Path(x),
        }
    }
}
impl PartialEq for PortIndexValue {
    fn eq(&self, other: &Self) -> bool {
        match (self, other) {
            (Self::Int(l0), Self::Int(r0)) => l0 == r0,
            (Self::Path(l0), Self::Path(r0)) => l0 == r0,
            (Self::Elided(_), Self::Elided(_)) => true,
            _else => false,
        }
    }
}
impl Eq for PortIndexValue {}
impl PartialOrd for PortIndexValue {
    fn partial_cmp(&self, other: &Self) -> Option<std::cmp::Ordering> {
        Some(self.cmp(other))
    }
}
impl Ord for PortIndexValue {
    fn cmp(&self, other: &Self) -> std::cmp::Ordering {
        match (self, other) {
            (Self::Int(s), Self::Int(o)) => s.cmp(o),
            (Self::Path(s), Self::Path(o)) => s
                .to_token_stream()
                .to_string()
                .cmp(&o.to_token_stream().to_string()),
            (Self::Elided(_), Self::Elided(_)) => std::cmp::Ordering::Equal,
            (Self::Int(_), Self::Path(_)) => std::cmp::Ordering::Less,
            (Self::Path(_), Self::Int(_)) => std::cmp::Ordering::Greater,
            (_, Self::Elided(_)) => std::cmp::Ordering::Less,
            (Self::Elided(_), _) => std::cmp::Ordering::Greater,
        }
    }
}

impl Display for PortIndexValue {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        match self {
            PortIndexValue::Int(x) => write!(f, "{}", x.to_token_stream()),
            PortIndexValue::Path(x) => write!(f, "{}", x.to_token_stream()),
            PortIndexValue::Elided(_) => write!(f, "[]"),
        }
    }
}

/// The main function of this module. Compiles a [`HfCode`] AST into a [`DfirGraph`] and
/// source code, or [`Diagnostic`] errors.
pub fn build_hfcode(
    hf_code: HfCode,
    root: &TokenStream,
) -> (Option<(DfirGraph, TokenStream)>, Vec<Diagnostic>) {
    let flat_graph_builder = FlatGraphBuilder::from_hfcode(hf_code);
    let (mut flat_graph, uses, mut diagnostics) = flat_graph_builder.build();
    if !diagnostics.iter().any(Diagnostic::is_error) {
        if let Err(diagnostic) = flat_graph.merge_modules() {
            diagnostics.push(diagnostic);
            return (None, diagnostics);
        }

        eliminate_extra_unions_tees(&mut flat_graph);
        match partition_graph(flat_graph) {
            Ok(partitioned_graph) => {
                let code = partitioned_graph.as_code(
                    root,
                    true,
                    quote::quote! { #( #uses )* },
                    &mut diagnostics,
                );
                if !diagnostics.iter().any(Diagnostic::is_error) {
                    // Success.
                    return (Some((partitioned_graph, code)), diagnostics);
                }
            }
            Err(diagnostic) => diagnostics.push(diagnostic),
        }
    }
    (None, diagnostics)
}

/// Changes all of token's spans to `span`, recursing into groups.
fn change_spans(tokens: TokenStream, span: Span) -> TokenStream {
    use proc_macro2::{Group, TokenTree};
    tokens
        .into_iter()
        .map(|token| match token {
            TokenTree::Group(mut group) => {
                group.set_span(span);
                TokenTree::Group(Group::new(
                    group.delimiter(),
                    change_spans(group.stream(), span),
                ))
            }
            TokenTree::Ident(mut ident) => {
                ident.set_span(span.resolved_at(ident.span()));
                TokenTree::Ident(ident)
            }
            TokenTree::Punct(mut punct) => {
                punct.set_span(span);
                TokenTree::Punct(punct)
            }
            TokenTree::Literal(mut literal) => {
                literal.set_span(span);
                TokenTree::Literal(literal)
            }
        })
        .collect()
}