1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615
#![warn(missing_docs)]
extern crate proc_macro;
use std::collections::{BTreeMap, BTreeSet};
use std::fmt::Debug;
use std::iter::FusedIterator;
use itertools::Itertools;
use proc_macro2::{Ident, Literal, Span, TokenStream};
use quote::{format_ident, quote, quote_spanned, ToTokens};
use serde::{Deserialize, Serialize};
use slotmap::{Key, SecondaryMap, SlotMap, SparseSecondaryMap};
use syn::spanned::Spanned;
use super::graph_write::{Dot, GraphWrite, Mermaid};
use super::ops::{
find_op_op_constraints, null_write_iterator_fn, DelayType, OperatorWriteOutput,
WriteContextArgs, OPERATORS,
};
use super::{
change_spans, get_operator_generics, Color, DiMulGraph, GraphEdgeId, GraphLoopId, GraphNode,
GraphNodeId, GraphSubgraphId, OperatorInstance, PortIndexValue, Varname, CONTEXT,
HANDOFF_NODE_STR, HYDROFLOW, MODULE_BOUNDARY_NODE_STR,
};
use crate::diagnostic::{Diagnostic, Level};
use crate::pretty_span::{PrettyRowCol, PrettySpan};
use crate::process_singletons;
/// An abstract "meta graph" representation of a Hydroflow graph.
///
/// Can be with or without subgraph partitioning, stratification, and handoff insertion. This is
/// the meta graph used for generating Rust source code in macros from Hydroflow surface sytnax.
///
/// This struct has a lot of methods for manipulating the graph, vaguely grouped together in
/// separate `impl` blocks. You might notice a few particularly specific arbitray-seeming methods
/// in here--those are just what was needed for the compilation algorithms. If you need another
/// method then add it.
#[derive(Default, Debug, Serialize, Deserialize)]
pub struct DfirGraph {
/// Each node type (operator or handoff).
nodes: SlotMap<GraphNodeId, GraphNode>,
/// Instance data corresponding to each operator node.
/// This field will be empty after deserialization.
#[serde(skip)]
operator_instances: SecondaryMap<GraphNodeId, OperatorInstance>,
/// Graph data structure (two-way adjacency list).
graph: DiMulGraph<GraphNodeId, GraphEdgeId>,
/// Input and output port for each edge.
ports: SecondaryMap<GraphEdgeId, (PortIndexValue, PortIndexValue)>,
/// Which loop a node belongs to (or none for top-level).
node_loops: SecondaryMap<GraphNodeId, GraphLoopId>,
loop_nodes: SlotMap<GraphLoopId, Vec<GraphNodeId>>,
/// For the key loop, what is its parent (`None` for top-level).
loop_parent: SparseSecondaryMap<GraphLoopId, GraphLoopId>,
/// For the key loop, what are its child loops.
loop_children: SecondaryMap<GraphLoopId, Vec<GraphLoopId>>,
/// Which subgraph each node belongs to.
node_subgraph: SecondaryMap<GraphNodeId, GraphSubgraphId>,
/// Which nodes belong to each subgraph.
subgraph_nodes: SlotMap<GraphSubgraphId, Vec<GraphNodeId>>,
/// Which stratum each subgraph belongs to.
subgraph_stratum: SecondaryMap<GraphSubgraphId, usize>,
/// Resolved singletons varnames references, per node.
node_singleton_references: SparseSecondaryMap<GraphNodeId, Vec<Option<GraphNodeId>>>,
/// What variable name each graph node belongs to (if any). For debugging (graph writing) purposes only.
node_varnames: SparseSecondaryMap<GraphNodeId, Varname>,
/// If this subgraph is 'lazy' then when it sends data to a lower stratum it does not cause a new tick to start
/// This is to support lazy defers
/// If the value does not exist for a given subgraph id then the subgraph is not lazy.
subgraph_laziness: SecondaryMap<GraphSubgraphId, bool>,
}
/// Basic methods.
impl DfirGraph {
/// Create a new empty `HydroflowGraph`.
pub fn new() -> Self {
Default::default()
}
}
/// Node methods.
impl DfirGraph {
/// Get a node with its operator instance (if applicable).
pub fn node(&self, node_id: GraphNodeId) -> &GraphNode {
self.nodes.get(node_id).expect("Node not found.")
}
/// Get the `OperatorInstance` for a given node. Node must be an operator and have an
/// `OperatorInstance` present, otherwise will return `None`.
///
/// Note that no operator instances will be persent after deserialization.
pub fn node_op_inst(&self, node_id: GraphNodeId) -> Option<&OperatorInstance> {
self.operator_instances.get(node_id)
}
/// Get the debug variable name attached to a graph node.
pub fn node_varname(&self, node_id: GraphNodeId) -> Option<Ident> {
self.node_varnames.get(node_id).map(|x| x.0.clone())
}
/// Get subgraph for node.
pub fn node_subgraph(&self, node_id: GraphNodeId) -> Option<GraphSubgraphId> {
self.node_subgraph.get(node_id).copied()
}
/// Degree into a node, i.e. the number of predecessors.
pub fn node_degree_in(&self, node_id: GraphNodeId) -> usize {
self.graph.degree_in(node_id)
}
/// Degree out of a node, i.e. the number of successors.
pub fn node_degree_out(&self, node_id: GraphNodeId) -> usize {
self.graph.degree_out(node_id)
}
/// Successors, iterator of `(GraphEdgeId, GraphNodeId)` of outgoing edges.
pub fn node_successors(
&self,
src: GraphNodeId,
) -> impl '_
+ DoubleEndedIterator<Item = (GraphEdgeId, GraphNodeId)>
+ ExactSizeIterator
+ FusedIterator
+ Clone
+ Debug {
self.graph.successors(src)
}
/// Predecessors, iterator of `(GraphEdgeId, GraphNodeId)` of incoming edges.
pub fn node_predecessors(
&self,
dst: GraphNodeId,
) -> impl '_
+ DoubleEndedIterator<Item = (GraphEdgeId, GraphNodeId)>
+ ExactSizeIterator
+ FusedIterator
+ Clone
+ Debug {
self.graph.predecessors(dst)
}
/// Successor edges, iterator of `GraphEdgeId` of outgoing edges.
pub fn node_successor_edges(
&self,
src: GraphNodeId,
) -> impl '_
+ DoubleEndedIterator<Item = GraphEdgeId>
+ ExactSizeIterator
+ FusedIterator
+ Clone
+ Debug {
self.graph.successor_edges(src)
}
/// Predecessor edges, iterator of `GraphEdgeId` of incoming edges.
pub fn node_predecessor_edges(
&self,
dst: GraphNodeId,
) -> impl '_
+ DoubleEndedIterator<Item = GraphEdgeId>
+ ExactSizeIterator
+ FusedIterator
+ Clone
+ Debug {
self.graph.predecessor_edges(dst)
}
/// Successor nodes, iterator of `GraphNodeId`.
pub fn node_successor_nodes(
&self,
src: GraphNodeId,
) -> impl '_
+ DoubleEndedIterator<Item = GraphNodeId>
+ ExactSizeIterator
+ FusedIterator
+ Clone
+ Debug {
self.graph.successor_vertices(src)
}
/// Predecessor nodes, iterator of `GraphNodeId`.
pub fn node_predecessor_nodes(
&self,
dst: GraphNodeId,
) -> impl '_
+ DoubleEndedIterator<Item = GraphNodeId>
+ ExactSizeIterator
+ FusedIterator
+ Clone
+ Debug {
self.graph.predecessor_vertices(dst)
}
/// Iterator of node IDs `GraphNodeId`.
pub fn node_ids(&self) -> slotmap::basic::Keys<'_, GraphNodeId, GraphNode> {
self.nodes.keys()
}
/// Iterator over `(GraphNodeId, &Node)` pairs.
pub fn nodes(&self) -> slotmap::basic::Iter<'_, GraphNodeId, GraphNode> {
self.nodes.iter()
}
/// Insert a node, assigning the given varname.
pub fn insert_node(
&mut self,
node: GraphNode,
varname_opt: Option<Ident>,
loop_opt: Option<GraphLoopId>,
) -> GraphNodeId {
let node_id = self.nodes.insert(node);
if let Some(varname) = varname_opt {
self.node_varnames.insert(node_id, Varname(varname));
}
if let Some(loop_id) = loop_opt {
self.node_loops.insert(node_id, loop_id);
self.loop_nodes[loop_id].push(node_id);
}
node_id
}
/// Insert an operator instance for the given node. Panics if already set.
pub fn insert_node_op_inst(&mut self, node_id: GraphNodeId, op_inst: OperatorInstance) {
assert!(matches!(
self.nodes.get(node_id),
Some(GraphNode::Operator(_))
));
let old_inst = self.operator_instances.insert(node_id, op_inst);
assert!(old_inst.is_none());
}
/// Assign all operator instances if not set. Write diagnostic messages/errors into `diagnostics`.
pub fn insert_node_op_insts_all(&mut self, diagnostics: &mut Vec<Diagnostic>) {
let mut op_insts = Vec::new();
for (node_id, node) in self.nodes() {
let GraphNode::Operator(operator) = node else {
continue;
};
if self.node_op_inst(node_id).is_some() {
continue;
};
// Op constraints.
let Some(op_constraints) = find_op_op_constraints(operator) else {
diagnostics.push(Diagnostic::spanned(
operator.path.span(),
Level::Error,
format!("Unknown operator `{}`", operator.name_string()),
));
continue;
};
// Input and output ports.
let (input_ports, output_ports) = {
let mut input_edges: Vec<(&PortIndexValue, GraphNodeId)> = self
.node_predecessors(node_id)
.map(|(edge_id, pred_id)| (self.edge_ports(edge_id).1, pred_id))
.collect();
// Ensure sorted by port index.
input_edges.sort();
let input_ports: Vec<PortIndexValue> = input_edges
.into_iter()
.map(|(port, _pred)| port)
.cloned()
.collect();
// Collect output arguments (successors).
let mut output_edges: Vec<(&PortIndexValue, GraphNodeId)> = self
.node_successors(node_id)
.map(|(edge_id, succ)| (self.edge_ports(edge_id).0, succ))
.collect();
// Ensure sorted by port index.
output_edges.sort();
let output_ports: Vec<PortIndexValue> = output_edges
.into_iter()
.map(|(port, _succ)| port)
.cloned()
.collect();
(input_ports, output_ports)
};
// Generic arguments.
let generics = get_operator_generics(diagnostics, operator);
// Generic argument errors.
{
// Span of `generic_args` (if it exists), otherwise span of the operator name.
let generics_span = generics
.generic_args
.as_ref()
.map(Spanned::span)
.unwrap_or_else(|| operator.path.span());
if !op_constraints
.persistence_args
.contains(&generics.persistence_args.len())
{
diagnostics.push(Diagnostic::spanned(
generics_span,
Level::Error,
format!(
"`{}` should have {} persistence lifetime arguments, actually has {}.",
op_constraints.name,
op_constraints.persistence_args.human_string(),
generics.persistence_args.len()
),
));
}
if !op_constraints.type_args.contains(&generics.type_args.len()) {
diagnostics.push(Diagnostic::spanned(
generics_span,
Level::Error,
format!(
"`{}` should have {} generic type arguments, actually has {}.",
op_constraints.name,
op_constraints.type_args.human_string(),
generics.type_args.len()
),
));
}
}
op_insts.push((
node_id,
OperatorInstance {
op_constraints,
input_ports,
output_ports,
singletons_referenced: operator.singletons_referenced.clone(),
generics,
arguments_pre: operator.args.clone(),
arguments_raw: operator.args_raw.clone(),
},
));
}
for (node_id, op_inst) in op_insts {
self.insert_node_op_inst(node_id, op_inst);
}
}
/// Inserts a node between two existing nodes connected by the given `edge_id`.
///
/// `edge`: (src, dst, dst_idx)
///
/// Before: A (src) ------------> B (dst)
/// After: A (src) -> X (new) -> B (dst)
///
/// Returns the ID of X & ID of edge OUT of X.
///
/// Note that both the edges will be new and `edge_id` will be removed. Both new edges will
/// get the edge type of the original edge.
pub fn insert_intermediate_node(
&mut self,
edge_id: GraphEdgeId,
new_node: GraphNode,
) -> (GraphNodeId, GraphEdgeId) {
let span = Some(new_node.span());
// Make corresponding operator instance (if `node` is an operator).
let op_inst_opt = 'oc: {
let GraphNode::Operator(operator) = &new_node else {
break 'oc None;
};
let Some(op_constraints) = find_op_op_constraints(operator) else {
break 'oc None;
};
let (input_port, output_port) = self.ports.get(edge_id).cloned().unwrap();
let generics = get_operator_generics(
&mut Vec::new(), // TODO(mingwei) diagnostics
operator,
);
Some(OperatorInstance {
op_constraints,
input_ports: vec![input_port],
output_ports: vec![output_port],
singletons_referenced: operator.singletons_referenced.clone(),
generics,
arguments_pre: operator.args.clone(),
arguments_raw: operator.args_raw.clone(),
})
};
// Insert new `node`.
let node_id = self.nodes.insert(new_node);
// Insert corresponding `OperatorInstance` if applicable.
if let Some(op_inst) = op_inst_opt {
self.operator_instances.insert(node_id, op_inst);
}
// Update edges to insert node within `edge_id`.
let (e0, e1) = self
.graph
.insert_intermediate_vertex(node_id, edge_id)
.unwrap();
// Update corresponding ports.
let (src_idx, dst_idx) = self.ports.remove(edge_id).unwrap();
self.ports
.insert(e0, (src_idx, PortIndexValue::Elided(span)));
self.ports
.insert(e1, (PortIndexValue::Elided(span), dst_idx));
(node_id, e1)
}
/// Remove the node `node_id` but preserves and connects the single predecessor and single successor.
/// Panics if the node does not have exactly one predecessor and one successor, or is not in the graph.
pub fn remove_intermediate_node(&mut self, node_id: GraphNodeId) {
assert_eq!(
1,
self.node_degree_in(node_id),
"Removed intermediate node must have one predecessor"
);
assert_eq!(
1,
self.node_degree_out(node_id),
"Removed intermediate node must have one successor"
);
assert!(
self.node_subgraph.is_empty() && self.subgraph_nodes.is_empty(),
"Should not remove intermediate node after subgraph partitioning"
);
assert!(self.nodes.remove(node_id).is_some());
let (new_edge_id, (pred_edge_id, succ_edge_id)) =
self.graph.remove_intermediate_vertex(node_id).unwrap();
self.operator_instances.remove(node_id);
self.node_varnames.remove(node_id);
let (src_port, _) = self.ports.remove(pred_edge_id).unwrap();
let (_, dst_port) = self.ports.remove(succ_edge_id).unwrap();
self.ports.insert(new_edge_id, (src_port, dst_port));
}
/// Helper method: determine the "color" (pull vs push) of a node based on its in and out degree,
/// excluding reference edges. If linear (1 in, 1 out), color is `None`, indicating it can be
/// either push or pull.
///
/// Note that this does NOT consider `DelayType` barriers (which generally implies `Pull`).
pub(crate) fn node_color(&self, node_id: GraphNodeId) -> Option<Color> {
if matches!(self.node(node_id), GraphNode::Handoff { .. }) {
return Some(Color::Hoff);
}
// In-degree excluding ref-edges.
let inn_degree = self.node_predecessor_edges(node_id).count();
// Out-degree excluding ref-edges.
let out_degree = self.node_successor_edges(node_id).count();
match (inn_degree, out_degree) {
(0, 0) => None, // Generally should not happen, "Degenerate subgraph detected".
(0, 1) => Some(Color::Pull),
(1, 0) => Some(Color::Push),
(1, 1) => None, // Linear, can be either push or pull.
(_many, 0 | 1) => Some(Color::Pull),
(0 | 1, _many) => Some(Color::Push),
(_many, _to_many) => Some(Color::Comp),
}
}
}
/// Singleton references.
impl DfirGraph {
/// Set the singletons referenced for the `node_id` operator. Each reference corresponds to the
/// same index in the [`crate::parse::Operator::singletons_referenced`] vec.
pub fn set_node_singleton_references(
&mut self,
node_id: GraphNodeId,
singletons_referenced: Vec<Option<GraphNodeId>>,
) -> Option<Vec<Option<GraphNodeId>>> {
self.node_singleton_references
.insert(node_id, singletons_referenced)
}
/// Gets the singletons referenced by a node. Returns an empty iterator for non-operators and
/// operators that do not reference singletons.
pub fn node_singleton_references(&self, node_id: GraphNodeId) -> &[Option<GraphNodeId>] {
self.node_singleton_references
.get(node_id)
.map(std::ops::Deref::deref)
.unwrap_or_default()
}
}
/// Module methods.
impl DfirGraph {
/// When modules are imported into a flat graph, they come with an input and output ModuleBoundary node.
/// The partitioner doesn't understand these nodes and will panic if it encounters them.
/// merge_modules removes them from the graph, stitching the input and ouput sides of the ModuleBondaries based on their ports
/// For example:
/// source_iter([]) -> \[myport\]ModuleBoundary(input)\[my_port\] -> map(|x| x) -> ModuleBoundary(output) -> null();
/// in the above eaxmple, the \[myport\] port will be used to connect the source_iter with the map that is inside of the module.
/// The output module boundary has elided ports, this is also used to match up the input/output across the module boundary.
pub fn merge_modules(&mut self) -> Result<(), Diagnostic> {
let mod_bound_nodes = self
.nodes()
.filter(|(_nid, node)| matches!(node, GraphNode::ModuleBoundary { .. }))
.map(|(nid, _node)| nid)
.collect::<Vec<_>>();
for mod_bound_node in mod_bound_nodes {
self.remove_module_boundary(mod_bound_node)?;
}
Ok(())
}
/// see `merge_modules`
/// This function removes a singular module boundary from the graph and performs the necessary stitching to fix the graph afterward.
/// `merge_modules` calls this function for each module boundary in the graph.
fn remove_module_boundary(&mut self, mod_bound_node: GraphNodeId) -> Result<(), Diagnostic> {
assert!(
self.node_subgraph.is_empty() && self.subgraph_nodes.is_empty(),
"Should not remove intermediate node after subgraph partitioning"
);
let mut mod_pred_ports = BTreeMap::new();
let mut mod_succ_ports = BTreeMap::new();
for mod_out_edge in self.node_predecessor_edges(mod_bound_node) {
let (pred_port, succ_port) = self.edge_ports(mod_out_edge);
mod_pred_ports.insert(succ_port.clone(), (mod_out_edge, pred_port.clone()));
}
for mod_inn_edge in self.node_successor_edges(mod_bound_node) {
let (pred_port, succ_port) = self.edge_ports(mod_inn_edge);
mod_succ_ports.insert(pred_port.clone(), (mod_inn_edge, succ_port.clone()));
}
if mod_pred_ports.keys().collect::<BTreeSet<_>>()
!= mod_succ_ports.keys().collect::<BTreeSet<_>>()
{
// get module boundary node
let GraphNode::ModuleBoundary { input, import_expr } = self.node(mod_bound_node) else {
panic!();
};
if *input {
return Err(Diagnostic {
span: *import_expr,
level: Level::Error,
message: format!(
"The ports into the module did not match. input: {:?}, expected: {:?}",
mod_pred_ports.keys().map(|x| x.to_string()).join(", "),
mod_succ_ports.keys().map(|x| x.to_string()).join(", ")
),
});
} else {
return Err(Diagnostic {
span: *import_expr,
level: Level::Error,
message: format!(
"The ports out of the module did not match. output: {:?}, expected: {:?}",
mod_succ_ports.keys().map(|x| x.to_string()).join(", "),
mod_pred_ports.keys().map(|x| x.to_string()).join(", "),
),
});
}
}
for (port, (pred_edge, pred_port)) in mod_pred_ports {
let (succ_edge, succ_port) = mod_succ_ports.remove(&port).unwrap();
let (src, _) = self.edge(pred_edge);
let (_, dst) = self.edge(succ_edge);
self.remove_edge(pred_edge);
self.remove_edge(succ_edge);
let new_edge_id = self.graph.insert_edge(src, dst);
self.ports.insert(new_edge_id, (pred_port, succ_port));
}
self.graph.remove_vertex(mod_bound_node);
self.nodes.remove(mod_bound_node);
Ok(())
}
}
/// Edge methods.
impl DfirGraph {
/// Get the `src` and `dst` for an edge: `(src GraphNodeId, dst GraphNodeId)`.
pub fn edge(&self, edge_id: GraphEdgeId) -> (GraphNodeId, GraphNodeId) {
let (src, dst) = self.graph.edge(edge_id).expect("Edge not found.");
(src, dst)
}
/// Get the source and destination ports for an edge: `(src &PortIndexValue, dst &PortIndexValue)`.
pub fn edge_ports(&self, edge_id: GraphEdgeId) -> (&PortIndexValue, &PortIndexValue) {
let (src_port, dst_port) = self.ports.get(edge_id).expect("Edge not found.");
(src_port, dst_port)
}
/// Iterator of all edge IDs `GraphEdgeId`.
pub fn edge_ids(&self) -> slotmap::basic::Keys<GraphEdgeId, (GraphNodeId, GraphNodeId)> {
self.graph.edge_ids()
}
/// Iterator over all edges: `(GraphEdgeId, (src GraphNodeId, dst GraphNodeId))`.
pub fn edges(
&self,
) -> impl '_
+ ExactSizeIterator<Item = (GraphEdgeId, (GraphNodeId, GraphNodeId))>
+ FusedIterator
+ Clone
+ Debug {
self.graph.edges()
}
/// Insert an edge between nodes thru the given ports.
pub fn insert_edge(
&mut self,
src: GraphNodeId,
src_port: PortIndexValue,
dst: GraphNodeId,
dst_port: PortIndexValue,
) -> GraphEdgeId {
let edge_id = self.graph.insert_edge(src, dst);
self.ports.insert(edge_id, (src_port, dst_port));
edge_id
}
/// Removes an edge and its corresponding ports and edge type info.
pub fn remove_edge(&mut self, edge: GraphEdgeId) {
let (_src, _dst) = self.graph.remove_edge(edge).unwrap();
let (_src_port, _dst_port) = self.ports.remove(edge).unwrap();
}
}
/// Subgraph methods.
impl DfirGraph {
/// Nodes belonging to the given subgraph.
pub fn subgraph(&self, subgraph_id: GraphSubgraphId) -> &Vec<GraphNodeId> {
self.subgraph_nodes
.get(subgraph_id)
.expect("Subgraph not found.")
}
/// Iterator over all subgraph IDs.
pub fn subgraph_ids(&self) -> slotmap::basic::Keys<'_, GraphSubgraphId, Vec<GraphNodeId>> {
self.subgraph_nodes.keys()
}
/// Iterator over all subgraphs, ID and members: `(GraphSubgraphId, Vec<GraphNodeId>)`.
pub fn subgraphs(&self) -> slotmap::basic::Iter<'_, GraphSubgraphId, Vec<GraphNodeId>> {
self.subgraph_nodes.iter()
}
/// Create a subgraph consisting of `node_ids`. Returns an error if any of the nodes are already in a subgraph.
pub fn insert_subgraph(
&mut self,
node_ids: Vec<GraphNodeId>,
) -> Result<GraphSubgraphId, (GraphNodeId, GraphSubgraphId)> {
// Check none are already in subgraphs
for &node_id in node_ids.iter() {
if let Some(&old_sg_id) = self.node_subgraph.get(node_id) {
return Err((node_id, old_sg_id));
}
}
let subgraph_id = self.subgraph_nodes.insert_with_key(|sg_id| {
for &node_id in node_ids.iter() {
self.node_subgraph.insert(node_id, sg_id);
}
node_ids
});
Ok(subgraph_id)
}
/// Removes a node from its subgraph. Returns true if the node was in a subgraph.
pub fn remove_from_subgraph(&mut self, node_id: GraphNodeId) -> bool {
if let Some(old_sg_id) = self.node_subgraph.remove(node_id) {
self.subgraph_nodes[old_sg_id].retain(|&other_node_id| other_node_id != node_id);
true
} else {
false
}
}
/// Gets the stratum number of the subgraph.
pub fn subgraph_stratum(&self, sg_id: GraphSubgraphId) -> Option<usize> {
self.subgraph_stratum.get(sg_id).copied()
}
/// Set subgraph's stratum number, returning the old value if exists.
pub fn set_subgraph_stratum(
&mut self,
sg_id: GraphSubgraphId,
stratum: usize,
) -> Option<usize> {
self.subgraph_stratum.insert(sg_id, stratum)
}
/// Gets whether the subgraph is lazy or not
fn subgraph_laziness(&self, sg_id: GraphSubgraphId) -> bool {
self.subgraph_laziness.get(sg_id).copied().unwrap_or(false)
}
/// Set subgraph's laziness, returning the old value.
pub fn set_subgraph_laziness(&mut self, sg_id: GraphSubgraphId, lazy: bool) -> bool {
self.subgraph_laziness.insert(sg_id, lazy).unwrap_or(false)
}
/// Returns the the stratum number of the largest (latest) stratum (inclusive).
pub fn max_stratum(&self) -> Option<usize> {
self.subgraph_stratum.values().copied().max()
}
/// Helper: finds the first index in `subgraph_nodes` where it transitions from pull to push.
fn find_pull_to_push_idx(&self, subgraph_nodes: &[GraphNodeId]) -> usize {
subgraph_nodes
.iter()
.position(|&node_id| {
self.node_color(node_id)
.map_or(false, |color| Color::Pull != color)
})
.unwrap_or(subgraph_nodes.len())
}
}
/// Display/output methods.
impl DfirGraph {
/// Helper to generate a deterministic `Ident` for the given node.
fn node_as_ident(&self, node_id: GraphNodeId, is_pred: bool) -> Ident {
let name = match &self.nodes[node_id] {
GraphNode::Operator(_) => format!("op_{:?}", node_id.data()),
GraphNode::Handoff { .. } => format!(
"hoff_{:?}_{}",
node_id.data(),
if is_pred { "recv" } else { "send" }
),
GraphNode::ModuleBoundary { .. } => panic!(),
};
let span = match (is_pred, &self.nodes[node_id]) {
(_, GraphNode::Operator(operator)) => operator.span(),
(true, &GraphNode::Handoff { src_span, .. }) => src_span,
(false, &GraphNode::Handoff { dst_span, .. }) => dst_span,
(_, GraphNode::ModuleBoundary { .. }) => panic!(),
};
Ident::new(&name, span)
}
/// For per-node singleton references. Helper to generate a deterministic `Ident` for the given node.
fn node_as_singleton_ident(&self, node_id: GraphNodeId, span: Span) -> Ident {
Ident::new(&format!("singleton_op_{:?}", node_id.data()), span)
}
/// Resolve the singletons via [`Self::node_singleton_references`] for the given `node_id`.
fn helper_resolve_singletons(&self, node_id: GraphNodeId, span: Span) -> Vec<Ident> {
self.node_singleton_references(node_id)
.iter()
.map(|singleton_node_id| {
// TODO(mingwei): this `expect` should be caught in error checking
self.node_as_singleton_ident(
singleton_node_id.expect(
"Expected singleton to be resolved but was not, this is a Hydroflow bug.",
),
span,
)
})
.collect::<Vec<_>>()
}
/// Returns each subgraph's receive and send handoffs.
/// `Map<GraphSubgraphId, (recv handoffs, send handoffs)>`
fn helper_collect_subgraph_handoffs(
&self,
) -> SecondaryMap<GraphSubgraphId, (Vec<GraphNodeId>, Vec<GraphNodeId>)> {
// Get data on handoff src and dst subgraphs.
let mut subgraph_handoffs: SecondaryMap<
GraphSubgraphId,
(Vec<GraphNodeId>, Vec<GraphNodeId>),
> = self
.subgraph_nodes
.keys()
.map(|k| (k, Default::default()))
.collect();
// For each handoff node, add it to the `send`/`recv` lists for the corresponding subgraphs.
for (hoff_id, node) in self.nodes() {
if !matches!(node, GraphNode::Handoff { .. }) {
continue;
}
// Receivers from the handoff. (Should really only be one).
for (_edge, succ_id) in self.node_successors(hoff_id) {
let succ_sg = self.node_subgraph(succ_id).unwrap();
subgraph_handoffs[succ_sg].0.push(hoff_id);
}
// Senders into the handoff. (Should really only be one).
for (_edge, pred_id) in self.node_predecessors(hoff_id) {
let pred_sg = self.node_subgraph(pred_id).unwrap();
subgraph_handoffs[pred_sg].1.push(hoff_id);
}
}
subgraph_handoffs
}
/// Emit this `HydroflowGraph` as runnable Rust source code tokens.
pub fn as_code(
&self,
root: &TokenStream,
include_type_guards: bool,
prefix: TokenStream,
diagnostics: &mut Vec<Diagnostic>,
) -> TokenStream {
let hf = Ident::new(HYDROFLOW, Span::call_site());
let context = Ident::new(CONTEXT, Span::call_site());
let handoffs = self
.nodes
.iter()
.filter_map(|(node_id, node)| match node {
GraphNode::Operator(_) => None,
&GraphNode::Handoff { src_span, dst_span } => Some((node_id, (src_span, dst_span))),
GraphNode::ModuleBoundary { .. } => panic!(),
})
.map(|(node_id, (src_span, dst_span))| {
let ident_send = Ident::new(&format!("hoff_{:?}_send", node_id.data()), dst_span);
let ident_recv = Ident::new(&format!("hoff_{:?}_recv", node_id.data()), src_span);
let hoff_name = Literal::string(&format!("handoff {:?}", node_id));
quote! {
let (#ident_send, #ident_recv) =
#hf.make_edge::<_, #root::scheduled::handoff::VecHandoff<_>>(#hoff_name);
}
});
let subgraph_handoffs = self.helper_collect_subgraph_handoffs();
// we first generate the subgraphs that have no inputs to guide type inference
let (subgraphs_without_preds, subgraphs_with_preds) = self
.subgraph_nodes
.iter()
.partition::<Vec<_>, _>(|(_, nodes)| {
nodes
.iter()
.any(|&node_id| self.node_degree_in(node_id) == 0)
});
let mut op_prologue_code = Vec::new();
let mut subgraphs = Vec::new();
{
for &(subgraph_id, subgraph_nodes) in subgraphs_without_preds
.iter()
.chain(subgraphs_with_preds.iter())
{
let (recv_hoffs, send_hoffs) = &subgraph_handoffs[subgraph_id];
let recv_ports: Vec<Ident> = recv_hoffs
.iter()
.map(|&hoff_id| self.node_as_ident(hoff_id, true))
.collect();
let send_ports: Vec<Ident> = send_hoffs
.iter()
.map(|&hoff_id| self.node_as_ident(hoff_id, false))
.collect();
let recv_port_code = recv_ports.iter().map(|ident| {
quote! {
let mut #ident = #ident.borrow_mut_swap();
let #ident = #ident.drain(..);
}
});
let send_port_code = send_ports.iter().map(|ident| {
quote! {
let #ident = #root::pusherator::for_each::ForEach::new(|v| {
#ident.give(Some(v));
});
}
});
let mut subgraph_op_iter_code = Vec::new();
let mut subgraph_op_iter_after_code = Vec::new();
{
let pull_to_push_idx = self.find_pull_to_push_idx(subgraph_nodes);
let (pull_half, push_half) = subgraph_nodes.split_at(pull_to_push_idx);
let nodes_iter = pull_half.iter().chain(push_half.iter().rev());
for (idx, &node_id) in nodes_iter.enumerate() {
let node = &self.nodes[node_id];
assert!(
matches!(node, GraphNode::Operator(_)),
"Handoffs are not part of subgraphs."
);
let op_inst = &self.operator_instances[node_id];
let op_span = node.span();
let op_name = op_inst.op_constraints.name;
// Use op's span for root. #root is expected to be correct, any errors should span back to the op gen.
let root = change_spans(root.clone(), op_span);
// TODO(mingwei): Just use `op_inst.op_constraints`?
let op_constraints = OPERATORS
.iter()
.find(|op| op_name == op.name)
.unwrap_or_else(|| panic!("Failed to find op: {}", op_name));
let ident = self.node_as_ident(node_id, false);
{
// TODO clean this up.
// Collect input arguments (predecessors).
let mut input_edges = self
.graph
.predecessor_edges(node_id)
.map(|edge_id| (self.edge_ports(edge_id).1, edge_id))
.collect::<Vec<_>>();
// Ensure sorted by port index.
input_edges.sort();
let inputs = input_edges
.iter()
.map(|&(_port, edge_id)| {
let (pred, _) = self.edge(edge_id);
self.node_as_ident(pred, true)
})
.collect::<Vec<_>>();
// Collect output arguments (successors).
let mut output_edges = self
.graph
.successor_edges(node_id)
.map(|edge_id| (&self.ports[edge_id].0, edge_id))
.collect::<Vec<_>>();
// Ensure sorted by port index.
output_edges.sort();
let outputs = output_edges
.iter()
.map(|&(_port, edge_id)| {
let (_, succ) = self.edge(edge_id);
self.node_as_ident(succ, false)
})
.collect::<Vec<_>>();
let is_pull = idx < pull_to_push_idx;
let singleton_output_ident = &if op_constraints.has_singleton_output {
self.node_as_singleton_ident(node_id, op_span)
} else {
// This ident *should* go unused.
Ident::new(&format!("{}_has_no_singleton_output", op_name), op_span)
};
// There's a bit of dark magic hidden in `Span`s... you'd think it's just a `file:line:column`,
// but it has one extra bit of info for _name resolution_, used for `Ident`s. `Span::call_site()`
// has the (unhygienic) resolution we want, an ident is just solely determined by its string name,
// which is what you'd expect out of unhygienic proc macros like this. Meanwhile, declarative macros
// use `Span::mixed_site()` which is weird and I don't understand it. It turns out that if you call
// the dfir syntax proc macro from _within_ a declarative macro then `op_span` will have the
// bad `Span::mixed_site()` name resolution and cause "Cannot find value `df/context`" errors. So
// we call `.resolved_at()` to fix resolution back to `Span::call_site()`. -Mingwei
let hydroflow = &Ident::new(HYDROFLOW, op_span.resolved_at(hf.span()));
let context = &Ident::new(CONTEXT, op_span.resolved_at(context.span()));
let singletons_resolved =
self.helper_resolve_singletons(node_id, op_span);
let arguments = &process_singletons::postprocess_singletons(
op_inst.arguments_raw.clone(),
singletons_resolved.clone(),
context,
);
let arguments_handles =
&process_singletons::postprocess_singletons_handles(
op_inst.arguments_raw.clone(),
singletons_resolved.clone(),
);
let context_args = WriteContextArgs {
root: &root,
hydroflow,
context,
subgraph_id,
node_id,
op_span,
ident: &ident,
is_pull,
inputs: &inputs,
outputs: &outputs,
singleton_output_ident,
op_name,
op_inst,
arguments,
arguments_handles,
};
let write_result =
(op_constraints.write_fn)(&context_args, diagnostics);
let OperatorWriteOutput {
write_prologue,
write_iterator,
write_iterator_after,
} = write_result.unwrap_or_else(|()| {
assert!(
diagnostics.iter().any(Diagnostic::is_error),
"Operator `{}` returned `Err` but emitted no diagnostics, this is a Hydroflow bug.",
op_name,
);
OperatorWriteOutput { write_iterator: null_write_iterator_fn(&context_args), ..Default::default() }
});
op_prologue_code.push(write_prologue);
subgraph_op_iter_code.push(write_iterator);
if include_type_guards {
#[cfg_attr(
not(nightly),
expect(unused_labels, reason = "conditional compilation")
)]
let source_info = 'a: {
#[cfg(nightly)]
if proc_macro::is_available() {
let op_span = op_span.unwrap();
break 'a format!(
"loc_{}_{}_{}_{}_{}",
op_span
.source_file()
.path()
.display()
.to_string()
.replace(|x: char| !x.is_alphanumeric(), "_"),
op_span.start().line(),
op_span.start().column(),
op_span.end().line(),
op_span.end().column(),
);
}
format!(
"loc_nopath_{}_{}_{}_{}",
op_span.start().line,
op_span.start().column,
op_span.end().line,
op_span.end().column
)
};
let fn_ident = format_ident!(
"{}__{}__{}",
ident,
op_name,
source_info,
span = op_span
);
let type_guard = if is_pull {
quote_spanned! {op_span=>
let #ident = {
#[allow(non_snake_case)]
#[inline(always)]
pub fn #fn_ident<Item, Input: ::std::iter::Iterator<Item = Item>>(input: Input) -> impl ::std::iter::Iterator<Item = Item> {
#[repr(transparent)]
struct Pull<Item, Input: ::std::iter::Iterator<Item = Item>> {
inner: Input
}
impl<Item, Input: ::std::iter::Iterator<Item = Item>> Iterator for Pull<Item, Input> {
type Item = Item;
#[inline(always)]
fn next(&mut self) -> Option<Self::Item> {
self.inner.next()
}
#[inline(always)]
fn size_hint(&self) -> (usize, Option<usize>) {
self.inner.size_hint()
}
}
Pull {
inner: input
}
}
#fn_ident( #ident )
};
}
} else {
quote_spanned! {op_span=>
let #ident = {
#[allow(non_snake_case)]
#[inline(always)]
pub fn #fn_ident<Item, Input: #root::pusherator::Pusherator<Item = Item>>(input: Input) -> impl #root::pusherator::Pusherator<Item = Item> {
#[repr(transparent)]
struct Push<Item, Input: #root::pusherator::Pusherator<Item = Item>> {
inner: Input
}
impl<Item, Input: #root::pusherator::Pusherator<Item = Item>> #root::pusherator::Pusherator for Push<Item, Input> {
type Item = Item;
#[inline(always)]
fn give(&mut self, item: Self::Item) {
self.inner.give(item)
}
}
Push {
inner: input
}
}
#fn_ident( #ident )
};
}
};
subgraph_op_iter_code.push(type_guard);
}
subgraph_op_iter_after_code.push(write_iterator_after);
}
}
{
// Determine pull and push halves of the `Pivot`.
let pull_ident = if 0 < pull_to_push_idx {
self.node_as_ident(subgraph_nodes[pull_to_push_idx - 1], false)
} else {
// Entire subgraph is push (with a single recv/pull handoff input).
recv_ports[0].clone()
};
#[rustfmt::skip]
let push_ident = if let Some(&node_id) =
subgraph_nodes.get(pull_to_push_idx)
{
self.node_as_ident(node_id, false)
} else if 1 == send_ports.len() {
// Entire subgraph is pull (with a single send/push handoff output).
send_ports[0].clone()
} else {
diagnostics.push(Diagnostic::spanned(
pull_ident.span(),
Level::Error,
"Degenerate subgraph detected, is there a disconnected `null()` or other degenerate pipeline somewhere?",
));
continue;
};
// Pivot span is combination of pull and push spans (or if not possible, just take the push).
let pivot_span = pull_ident
.span()
.join(push_ident.span())
.unwrap_or_else(|| push_ident.span());
let pivot_fn_ident =
Ident::new(&format!("pivot_run_sg_{:?}", subgraph_id.0), pivot_span);
subgraph_op_iter_code.push(quote_spanned! {pivot_span=>
#[inline(always)]
fn #pivot_fn_ident<Pull: ::std::iter::Iterator<Item = Item>, Push: #root::pusherator::Pusherator<Item = Item>, Item>(pull: Pull, push: Push) {
#root::pusherator::pivot::Pivot::new(pull, push).run();
}
#pivot_fn_ident(#pull_ident, #push_ident);
});
}
};
let hoff_name = Literal::string(&format!("Subgraph {:?}", subgraph_id));
let stratum = Literal::usize_unsuffixed(
self.subgraph_stratum.get(subgraph_id).cloned().unwrap_or(0),
);
let laziness = self.subgraph_laziness(subgraph_id);
subgraphs.push(quote! {
#hf.add_subgraph_stratified(
#hoff_name,
#stratum,
var_expr!( #( #recv_ports ),* ),
var_expr!( #( #send_ports ),* ),
#laziness,
move |#context, var_args!( #( #recv_ports ),* ), var_args!( #( #send_ports ),* )| {
#( #recv_port_code )*
#( #send_port_code )*
#( #subgraph_op_iter_code )*
#( #subgraph_op_iter_after_code )*
},
);
});
}
}
// These two are quoted separately here because iterators are lazily evaluated, so this
// forces them to do their work. This work includes populating some data, namely
// `diagonstics`, which we need to determine if it compilation was actually successful.
// -Mingwei
let code = quote! {
#( #handoffs )*
#( #op_prologue_code )*
#( #subgraphs )*
};
let meta_graph_json = serde_json::to_string(&self).unwrap();
let meta_graph_json = Literal::string(&meta_graph_json);
let serde_diagnostics: Vec<_> = diagnostics.iter().map(Diagnostic::to_serde).collect();
let diagnostics_json = serde_json::to_string(&*serde_diagnostics).unwrap();
let diagnostics_json = Literal::string(&diagnostics_json);
quote! {
{
#[allow(unused_qualifications)]
{
#prefix
use #root::{var_expr, var_args};
let mut #hf = #root::scheduled::graph::Dfir::new();
#hf.__assign_meta_graph(#meta_graph_json);
#hf.__assign_diagnostics(#diagnostics_json);
#code
#hf
}
}
}
}
/// Color mode (pull vs. push, handoff vs. comp) for nodes. Some nodes can be push *OR* pull;
/// those nodes will not be set in the returned map.
pub fn node_color_map(&self) -> SparseSecondaryMap<GraphNodeId, Color> {
let mut node_color_map: SparseSecondaryMap<GraphNodeId, Color> = self
.node_ids()
.filter_map(|node_id| {
let op_color = self.node_color(node_id)?;
Some((node_id, op_color))
})
.collect();
// Fill in rest via subgraphs.
for sg_nodes in self.subgraph_nodes.values() {
let pull_to_push_idx = self.find_pull_to_push_idx(sg_nodes);
for (idx, node_id) in sg_nodes.iter().copied().enumerate() {
let is_pull = idx < pull_to_push_idx;
node_color_map.insert(node_id, if is_pull { Color::Pull } else { Color::Push });
}
}
node_color_map
}
/// Writes this graph as mermaid into a string.
pub fn to_mermaid(&self, write_config: &WriteConfig) -> String {
let mut output = String::new();
self.write_mermaid(&mut output, write_config).unwrap();
output
}
/// Writes this graph as mermaid into the given `Write`.
pub fn write_mermaid(
&self,
output: impl std::fmt::Write,
write_config: &WriteConfig,
) -> std::fmt::Result {
let mut graph_write = Mermaid::new(output);
self.write_graph(&mut graph_write, write_config)
}
/// Writes this graph as DOT (graphviz) into a string.
pub fn to_dot(&self, write_config: &WriteConfig) -> String {
let mut output = String::new();
let mut graph_write = Dot::new(&mut output);
self.write_graph(&mut graph_write, write_config).unwrap();
output
}
/// Writes this graph as DOT (graphviz) into the given `Write`.
pub fn write_dot(
&self,
output: impl std::fmt::Write,
write_config: &WriteConfig,
) -> std::fmt::Result {
let mut graph_write = Dot::new(output);
self.write_graph(&mut graph_write, write_config)
}
/// Write out this `HydroflowGraph` using the given `GraphWrite`. E.g. `Mermaid` or `Dot.
pub(crate) fn write_graph<W>(
&self,
mut graph_write: W,
write_config: &WriteConfig,
) -> Result<(), W::Err>
where
W: GraphWrite,
{
fn helper_edge_label(
src_port: &PortIndexValue,
dst_port: &PortIndexValue,
) -> Option<String> {
let src_label = match src_port {
PortIndexValue::Path(path) => Some(path.to_token_stream().to_string()),
PortIndexValue::Int(index) => Some(index.value.to_string()),
_ => None,
};
let dst_label = match dst_port {
PortIndexValue::Path(path) => Some(path.to_token_stream().to_string()),
PortIndexValue::Int(index) => Some(index.value.to_string()),
_ => None,
};
let label = match (src_label, dst_label) {
(Some(l1), Some(l2)) => Some(format!("{}\n{}", l1, l2)),
(Some(l1), None) => Some(l1),
(None, Some(l2)) => Some(l2),
(None, None) => None,
};
label
}
// Make node color map one time.
let node_color_map = self.node_color_map();
// Collect varnames.
let mut sg_varname_nodes =
<SparseSecondaryMap<GraphSubgraphId, BTreeMap<Varname, BTreeSet<GraphNodeId>>>>::new();
let mut varname_nodes = <BTreeMap<Varname, BTreeSet<GraphNodeId>>>::new();
if !write_config.no_varnames {
for (node_id, varname) in self.node_varnames.iter() {
// Only collect if needed.
let varname_map = if !write_config.no_subgraphs {
let Some(sg_id) = self.node_subgraph(node_id) else {
continue;
};
sg_varname_nodes.entry(sg_id).unwrap().or_default()
} else {
&mut varname_nodes
};
varname_map
.entry(varname.clone())
.or_default()
.insert(node_id);
}
}
// Write prologue.
graph_write.write_prologue()?;
// Write nodes.
let mut skipped_handoffs = BTreeSet::new();
let mut subgraph_handoffs = <BTreeMap<GraphSubgraphId, Vec<GraphNodeId>>>::new();
for (node_id, node) in self.nodes() {
if matches!(node, GraphNode::Handoff { .. }) {
if write_config.no_handoffs {
skipped_handoffs.insert(node_id);
continue;
} else {
let pred_node = self.node_predecessor_nodes(node_id).next().unwrap();
let pred_sg = self.node_subgraph(pred_node);
let succ_node = self.node_successor_nodes(node_id).next().unwrap();
let succ_sg = self.node_subgraph(succ_node);
if let Some((pred_sg, succ_sg)) = pred_sg.zip(succ_sg) {
if pred_sg == succ_sg {
subgraph_handoffs.entry(pred_sg).or_default().push(node_id);
}
}
}
}
graph_write.write_node(
node_id,
&if write_config.op_short_text {
node.to_name_string()
} else if write_config.op_text_no_imports {
// Remove any lines that start with "use" (imports)
let full_text = node.to_pretty_string();
let mut output = String::new();
for sentence in full_text.split('\n') {
if sentence.trim().starts_with("use") {
continue;
}
output.push('\n');
output.push_str(sentence);
}
output.into()
} else {
node.to_pretty_string()
},
if write_config.no_pull_push {
None
} else {
node_color_map.get(node_id).copied()
},
)?;
}
// Write edges.
for (edge_id, (src_id, mut dst_id)) in self.edges() {
// Handling for if `write_config.no_handoffs` true.
if skipped_handoffs.contains(&src_id) {
continue;
}
let (src_port, mut dst_port) = self.edge_ports(edge_id);
if skipped_handoffs.contains(&dst_id) {
let mut handoff_succs = self.node_successors(dst_id);
assert_eq!(1, handoff_succs.len());
let (succ_edge, succ_node) = handoff_succs.next().unwrap();
dst_id = succ_node;
dst_port = self.edge_ports(succ_edge).1;
}
let label = helper_edge_label(src_port, dst_port);
let delay_type = self
.node_op_inst(dst_id)
.and_then(|op_inst| (op_inst.op_constraints.input_delaytype_fn)(dst_port));
graph_write.write_edge(src_id, dst_id, delay_type, label.as_deref(), false)?;
}
// Write reference edges.
if !write_config.no_references {
for dst_id in self.node_ids() {
for src_ref_id in self
.node_singleton_references(dst_id)
.iter()
.copied()
.flatten()
{
let delay_type = Some(DelayType::Stratum);
let label = None;
graph_write.write_edge(src_ref_id, dst_id, delay_type, label, true)?;
}
}
}
// Write subgraphs.
if !write_config.no_subgraphs {
for (subgraph_id, subgraph_node_ids) in self.subgraph_nodes.iter() {
let handoff_node_ids = subgraph_handoffs.get(&subgraph_id).into_iter().flatten();
let subgraph_node_ids = subgraph_node_ids.iter();
let all_node_ids = handoff_node_ids.chain(subgraph_node_ids).copied();
let stratum = self.subgraph_stratum.get(subgraph_id);
graph_write.write_subgraph_start(subgraph_id, *stratum.unwrap(), all_node_ids)?;
// Write out any variable names within the subgraph.
if !write_config.no_varnames {
for (varname, varname_node_ids) in
sg_varname_nodes.remove(subgraph_id).into_iter().flatten()
{
assert!(!varname_node_ids.is_empty());
graph_write.write_varname(
&varname.0.to_string(),
varname_node_ids.into_iter(),
Some(subgraph_id),
)?;
}
}
graph_write.write_subgraph_end()?;
}
} else if !write_config.no_varnames {
for (varname, varname_node_ids) in varname_nodes {
graph_write.write_varname(
&varname.0.to_string(),
varname_node_ids.into_iter(),
None,
)?;
}
}
// Write epilogue.
graph_write.write_epilogue()?;
Ok(())
}
/// Convert back into surface syntax.
pub fn surface_syntax_string(&self) -> String {
let mut string = String::new();
self.write_surface_syntax(&mut string).unwrap();
string
}
/// Convert back into surface syntax.
pub fn write_surface_syntax(&self, write: &mut impl std::fmt::Write) -> std::fmt::Result {
for (key, node) in self.nodes.iter() {
match node {
GraphNode::Operator(op) => {
writeln!(write, "{:?} = {};", key.data(), op.to_token_stream())?;
}
GraphNode::Handoff { .. } => unimplemented!("HANDOFF IN FLAT GRAPH."),
GraphNode::ModuleBoundary { .. } => panic!(),
}
}
writeln!(write)?;
for (_e, (src_key, dst_key)) in self.graph.edges() {
writeln!(write, "{:?} -> {:?};", src_key.data(), dst_key.data())?;
}
Ok(())
}
/// Convert into a [mermaid](https://mermaid-js.github.io/) graph. Ignores subgraphs.
pub fn mermaid_string_flat(&self) -> String {
let mut string = String::new();
self.write_mermaid_flat(&mut string).unwrap();
string
}
/// Convert into a [mermaid](https://mermaid-js.github.io/) graph. Ignores subgraphs.
pub fn write_mermaid_flat(&self, write: &mut impl std::fmt::Write) -> std::fmt::Result {
writeln!(write, "flowchart TB")?;
for (key, node) in self.nodes.iter() {
match node {
GraphNode::Operator(operator) => writeln!(
write,
" %% {span}\n {id:?}[\"{row_col} <tt>{code}</tt>\"]",
span = PrettySpan(node.span()),
id = key.data(),
row_col = PrettyRowCol(node.span()),
code = operator
.to_token_stream()
.to_string()
.replace('&', "&")
.replace('<', "<")
.replace('>', ">")
.replace('"', """)
.replace('\n', "<br>"),
),
GraphNode::Handoff { .. } => {
writeln!(write, r#" {:?}{{"{}"}}"#, key.data(), HANDOFF_NODE_STR)
}
GraphNode::ModuleBoundary { .. } => {
writeln!(
write,
r#" {:?}{{"{}"}}"#,
key.data(),
MODULE_BOUNDARY_NODE_STR
)
}
}?;
}
writeln!(write)?;
for (_e, (src_key, dst_key)) in self.graph.edges() {
writeln!(write, " {:?}-->{:?}", src_key.data(), dst_key.data())?;
}
Ok(())
}
}
/// Loops
impl DfirGraph {
/// Iterator over all loop IDs.
pub fn loop_ids(&self) -> slotmap::basic::Keys<'_, GraphLoopId, Vec<GraphNodeId>> {
self.loop_nodes.keys()
}
/// Iterator over all loops, ID and members: `(GraphLoopId, Vec<GraphNodeId>)`.
pub fn loops(&self) -> slotmap::basic::Iter<'_, GraphLoopId, Vec<GraphNodeId>> {
self.loop_nodes.iter()
}
/// Create a new loop context, with the given parent loop (or `None`).
pub fn insert_loop(&mut self, parent_loop: Option<GraphLoopId>) -> GraphLoopId {
let loop_id = self.loop_nodes.insert(Vec::new());
self.loop_children.insert(loop_id, Vec::new());
if let Some(parent_loop) = parent_loop {
self.loop_parent.insert(loop_id, parent_loop);
self.loop_children
.get_mut(parent_loop)
.unwrap()
.push(loop_id);
}
loop_id
}
/// Get a node's loop context (or `None` for root).
pub fn node_loop(&self, node_id: GraphNodeId) -> Option<GraphLoopId> {
self.node_loops.get(node_id).copied()
}
/// Get a loop context's parent loop context (or `None` for root).
pub fn loop_parent(&self, loop_id: GraphLoopId) -> Option<GraphLoopId> {
self.loop_parent.get(loop_id).copied()
}
/// Get a loop context's child loops.
pub fn loop_children(&self, loop_id: GraphLoopId) -> &Vec<GraphLoopId> {
self.loop_children.get(loop_id).unwrap()
}
}
/// Configuration for writing graphs.
#[derive(Clone, Debug, Default)]
#[cfg_attr(feature = "clap-derive", derive(clap::Args))]
pub struct WriteConfig {
/// Subgraphs will not be rendered if set.
#[cfg_attr(feature = "clap-derive", arg(long))]
pub no_subgraphs: bool,
/// Variable names will not be rendered if set.
#[cfg_attr(feature = "clap-derive", arg(long))]
pub no_varnames: bool,
/// Will not render pull/push shapes if set.
#[cfg_attr(feature = "clap-derive", arg(long))]
pub no_pull_push: bool,
/// Will not render handoffs if set.
#[cfg_attr(feature = "clap-derive", arg(long))]
pub no_handoffs: bool,
/// Will not render singleton references if set.
#[cfg_attr(feature = "clap-derive", arg(long))]
pub no_references: bool,
/// Op text will only be their name instead of the whole source.
#[cfg_attr(feature = "clap-derive", arg(long))]
pub op_short_text: bool,
/// Op text will exclude any line that starts with "use".
#[cfg_attr(feature = "clap-derive", arg(long))]
pub op_text_no_imports: bool,
}
/// Enum for choosing between mermaid and dot graph writing.
#[derive(Copy, Clone, Debug)]
#[cfg_attr(feature = "clap-derive", derive(clap::Parser, clap::ValueEnum))]
pub enum WriteGraphType {
/// Mermaid graphs.
Mermaid,
/// Dot (Graphviz) graphs.
Dot,
}