1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920
//! Build a flat graph from [`HfStatement`]s.
use std::borrow::Cow;
use std::collections::btree_map::Entry;
use std::collections::{BTreeMap, BTreeSet};
use itertools::Itertools;
use proc_macro2::Span;
use quote::ToTokens;
use syn::spanned::Spanned;
use syn::{Error, Ident, ItemUse};
use super::ops::defer_tick::DEFER_TICK;
use super::ops::FloType;
use super::{DfirGraph, GraphEdgeId, GraphLoopId, GraphNode, GraphNodeId, PortIndexValue};
use crate::diagnostic::{Diagnostic, Level};
use crate::graph::graph_algorithms;
use crate::graph::ops::{PortListSpec, RangeTrait};
use crate::parse::{HfCode, HfStatement, Operator, Pipeline};
use crate::pretty_span::PrettySpan;
#[derive(Clone, Debug)]
struct Ends {
inn: Option<(PortIndexValue, GraphDet)>,
out: Option<(PortIndexValue, GraphDet)>,
}
#[derive(Clone, Debug)]
enum GraphDet {
Determined(GraphNodeId),
Undetermined(Ident),
}
/// Variable name info for each ident, see [`FlatGraphBuilder::varname_ends`].
#[derive(Debug)]
struct VarnameInfo {
/// What the variable name resolves to.
pub ends: Ends,
/// Set to true if the varname reference creates an illegal self-referential cycle.
pub illegal_cycle: bool,
/// Set to true once the in port is used. Used to track unused ports.
pub inn_used: bool,
/// Set to true once the out port is used. Used to track unused ports.
pub out_used: bool,
}
impl VarnameInfo {
pub fn new(ends: Ends) -> Self {
Self {
ends,
illegal_cycle: false,
inn_used: false,
out_used: false,
}
}
}
/// Wraper around [`DfirGraph`] to build a flat graph from AST code.
#[derive(Debug, Default)]
pub struct FlatGraphBuilder {
/// Spanned error/warning/etc diagnostics to emit.
diagnostics: Vec<Diagnostic>,
/// HydroflowGraph being built.
flat_graph: DfirGraph,
/// Variable names, used as [`HfStatement::Named`] are added.
varname_ends: BTreeMap<Ident, VarnameInfo>,
/// Each (out -> inn) link inputted.
links: Vec<Ends>,
/// Use statements.
uses: Vec<ItemUse>,
/// If the flat graph is being loaded as a module, then two initial ModuleBoundary nodes are inserted into the graph. One
/// for the input into the module and one for the output out of the module.
module_boundary_nodes: Option<(GraphNodeId, GraphNodeId)>,
}
impl FlatGraphBuilder {
/// Create a new empty graph builder.
pub fn new() -> Self {
Default::default()
}
/// Convert the Hydroflow code AST into a graph builder.
pub fn from_hfcode(input: HfCode) -> Self {
let mut builder = Self::default();
builder.process_statements(input.statements);
builder
}
fn process_statements(&mut self, statements: impl IntoIterator<Item = HfStatement>) {
for stmt in statements {
self.add_statement(stmt);
}
}
/// Build into an unpartitioned [`DfirGraph`], returning a tuple of a `HydroflowGraph` and
/// any diagnostics.
///
/// Even if there are errors, the `HydroflowGraph` will be returned (potentially in a invalid
/// state). Does not call `emit` on any diagnostics.
pub fn build(mut self) -> (DfirGraph, Vec<ItemUse>, Vec<Diagnostic>) {
self.connect_operator_links();
self.process_operator_errors();
(self.flat_graph, self.uses, self.diagnostics)
}
/// Add a single [`HfStatement`] line to this `HydroflowGraph` in the root context.
pub fn add_statement(&mut self, stmt: HfStatement) {
self.add_statement_with_loop(stmt, None)
}
/// Add a single [`HfStatement`] line to this `HydroflowGraph` in the given loop context.
pub fn add_statement_with_loop(
&mut self,
stmt: HfStatement,
current_loop: Option<GraphLoopId>,
) {
match stmt {
HfStatement::Use(yuse) => {
self.uses.push(yuse);
}
HfStatement::Named(named) => {
let stmt_span = named.span();
let ends = self.add_pipeline(named.pipeline, Some(&named.name), current_loop);
match self.varname_ends.entry(named.name) {
Entry::Vacant(vacant_entry) => {
vacant_entry.insert(VarnameInfo::new(ends));
}
Entry::Occupied(occupied_entry) => {
let prev_conflict = occupied_entry.key();
self.diagnostics.push(Diagnostic::spanned(
prev_conflict.span(),
Level::Error,
format!(
"Existing assignment to `{}` conflicts with later assignment: {} (1/2)",
prev_conflict,
PrettySpan(stmt_span),
),
));
self.diagnostics.push(Diagnostic::spanned(
stmt_span,
Level::Error,
format!(
"Name assignment to `{}` conflicts with existing assignment: {} (2/2)",
prev_conflict,
PrettySpan(prev_conflict.span())
),
));
}
}
}
HfStatement::Pipeline(pipeline_stmt) => {
let ends = self.add_pipeline(pipeline_stmt.pipeline, None, current_loop);
Self::helper_check_unused_port(&mut self.diagnostics, &ends, true);
Self::helper_check_unused_port(&mut self.diagnostics, &ends, false);
}
HfStatement::Loop(loop_statement) => {
let inner_loop = self.flat_graph.insert_loop(current_loop);
for stmt in loop_statement.statements {
self.add_statement_with_loop(stmt, Some(inner_loop));
}
}
}
}
/// Helper: Add a pipeline, i.e. `a -> b -> c`. Return the input and output ends for it.
fn add_pipeline(
&mut self,
pipeline: Pipeline,
current_varname: Option<&Ident>,
current_loop: Option<GraphLoopId>,
) -> Ends {
match pipeline {
Pipeline::Paren(ported_pipeline_paren) => {
let (inn_port, pipeline_paren, out_port) =
PortIndexValue::from_ported(ported_pipeline_paren);
let og_ends =
self.add_pipeline(*pipeline_paren.pipeline, current_varname, current_loop);
Self::helper_combine_ends(&mut self.diagnostics, og_ends, inn_port, out_port)
}
Pipeline::Name(pipeline_name) => {
let (inn_port, ident, out_port) = PortIndexValue::from_ported(pipeline_name);
// Mingwei: We could lookup non-forward references immediately, but easier to just
// have one consistent code path: `GraphDet::Undetermined`.
Ends {
inn: Some((inn_port, GraphDet::Undetermined(ident.clone()))),
out: Some((out_port, GraphDet::Undetermined(ident))),
}
}
Pipeline::ModuleBoundary(pipeline_name) => {
let Some((input_node, output_node)) = self.module_boundary_nodes else {
self.diagnostics.push(
Error::new(
pipeline_name.span(),
"`mod` is only usable inside of a module.",
)
.into(),
);
return Ends {
inn: None,
out: None,
};
};
let (inn_port, _, out_port) = PortIndexValue::from_ported(pipeline_name);
Ends {
inn: Some((inn_port, GraphDet::Determined(output_node))),
out: Some((out_port, GraphDet::Determined(input_node))),
}
}
Pipeline::Link(pipeline_link) => {
// Add the nested LHS and RHS of this link.
let lhs_ends = self.add_pipeline(*pipeline_link.lhs, current_varname, current_loop);
let rhs_ends = self.add_pipeline(*pipeline_link.rhs, current_varname, current_loop);
// Outer (first and last) ends.
let outer_ends = Ends {
inn: lhs_ends.inn,
out: rhs_ends.out,
};
// Inner (link) ends.
let link_ends = Ends {
out: lhs_ends.out,
inn: rhs_ends.inn,
};
self.links.push(link_ends);
outer_ends
}
Pipeline::Operator(operator) => {
let op_span = Some(operator.span());
let nid = self.flat_graph.insert_node(
GraphNode::Operator(operator),
current_varname.cloned(),
current_loop,
);
Ends {
inn: Some((PortIndexValue::Elided(op_span), GraphDet::Determined(nid))),
out: Some((PortIndexValue::Elided(op_span), GraphDet::Determined(nid))),
}
}
}
}
/// Connects operator links as a final building step. Processes all the links stored in
/// `self.links` and actually puts them into the graph.
fn connect_operator_links(&mut self) {
// `->` edges
for Ends { out, inn } in std::mem::take(&mut self.links) {
let out_opt = self.helper_resolve_name(out, false);
let inn_opt = self.helper_resolve_name(inn, true);
// `None` already have errors in `self.diagnostics`.
if let (Some((out_port, out_node)), Some((inn_port, inn_node))) = (out_opt, inn_opt) {
let _ = self.connect_operators(out_port, out_node, inn_port, inn_node);
}
}
// Resolve the singleton references for each node.
for node_id in self.flat_graph.node_ids().collect::<Vec<_>>() {
if let GraphNode::Operator(operator) = self.flat_graph.node(node_id) {
let singletons_referenced = operator
.singletons_referenced
.clone()
.into_iter()
.map(|singleton_ref| {
let port_det = self
.varname_ends
.get(&singleton_ref)
.filter(|varname_info| !varname_info.illegal_cycle)
.map(|varname_info| &varname_info.ends)
.and_then(|ends| ends.out.as_ref())
.cloned();
if let Some((_port, node_id)) = self.helper_resolve_name(port_det, false) {
Some(node_id)
} else {
self.diagnostics.push(Diagnostic::spanned(
singleton_ref.span(),
Level::Error,
format!(
"Cannot find referenced name `{}`; name was never assigned.",
singleton_ref
),
));
None
}
})
.collect();
self.flat_graph
.set_node_singleton_references(node_id, singletons_referenced);
}
}
}
/// Recursively resolve a variable name. For handling forward (and backward) name references
/// after all names have been assigned.
/// Returns `None` if the name is not resolvable, either because it was never assigned or
/// because it contains a self-referential cycle.
///
/// `is_in` set to `true` means the _input_ side will be returned. `false` means the _output_ side will be returned.
fn helper_resolve_name(
&mut self,
mut port_det: Option<(PortIndexValue, GraphDet)>,
is_in: bool,
) -> Option<(PortIndexValue, GraphNodeId)> {
const BACKUP_RECURSION_LIMIT: usize = 1024;
let mut names = Vec::new();
for _ in 0..BACKUP_RECURSION_LIMIT {
match port_det? {
(port, GraphDet::Determined(node_id)) => {
return Some((port, node_id));
}
(port, GraphDet::Undetermined(ident)) => {
let Some(varname_info) = self.varname_ends.get_mut(&ident) else {
self.diagnostics.push(Diagnostic::spanned(
ident.span(),
Level::Error,
format!("Cannot find name `{}`; name was never assigned.", ident),
));
return None;
};
// Check for a self-referential cycle.
let cycle_found = names.contains(&ident);
if !cycle_found {
names.push(ident);
};
if cycle_found || varname_info.illegal_cycle {
let len = names.len();
for (i, name) in names.into_iter().enumerate() {
self.diagnostics.push(Diagnostic::spanned(
name.span(),
Level::Error,
format!(
"Name `{}` forms or references an illegal self-referential cycle ({}/{}).",
name,
i + 1,
len
),
));
// Set value as `Err(())` to trigger `name_ends_result.is_err()`
// diagnostics above if the name is referenced in the future.
self.varname_ends.get_mut(&name).unwrap().illegal_cycle = true;
}
return None;
}
// No self-cycle.
let prev = if is_in {
varname_info.inn_used = true;
&varname_info.ends.inn
} else {
varname_info.out_used = true;
&varname_info.ends.out
};
port_det = Self::helper_combine_end(
&mut self.diagnostics,
prev.clone(),
port,
if is_in { "input" } else { "output" },
);
}
}
}
self.diagnostics.push(Diagnostic::spanned(
Span::call_site(),
Level::Error,
format!(
"Reached the recursion limit {} while resolving names. This is either a dfir bug or you have an absurdly long chain of names: `{}`.",
BACKUP_RECURSION_LIMIT,
names.iter().map(ToString::to_string).collect::<Vec<_>>().join("` -> `"),
)
));
None
}
/// Connect two operators on the given port indexes.
fn connect_operators(
&mut self,
src_port: PortIndexValue,
src: GraphNodeId,
dst_port: PortIndexValue,
dst: GraphNodeId,
) -> GraphEdgeId {
{
/// Helper to emit conflicts when a port is used twice.
fn emit_conflict(
inout: &str,
old: &PortIndexValue,
new: &PortIndexValue,
diagnostics: &mut Vec<Diagnostic>,
) {
// TODO(mingwei): Use `MultiSpan` once `proc_macro2` supports it.
diagnostics.push(Diagnostic::spanned(
old.span(),
Level::Error,
format!(
"{} connection conflicts with below ({}) (1/2)",
inout,
PrettySpan(new.span()),
),
));
diagnostics.push(Diagnostic::spanned(
new.span(),
Level::Error,
format!(
"{} connection conflicts with above ({}) (2/2)",
inout,
PrettySpan(old.span()),
),
));
}
// Handle src's successor port conflicts:
if src_port.is_specified() {
for conflicting_port in self
.flat_graph
.node_successor_edges(src)
.map(|edge_id| self.flat_graph.edge_ports(edge_id).0)
.filter(|&port| port == &src_port)
{
emit_conflict("Output", conflicting_port, &src_port, &mut self.diagnostics);
}
}
// Handle dst's predecessor port conflicts:
if dst_port.is_specified() {
for conflicting_port in self
.flat_graph
.node_predecessor_edges(dst)
.map(|edge_id| self.flat_graph.edge_ports(edge_id).1)
.filter(|&port| port == &dst_port)
{
emit_conflict("Input", conflicting_port, &dst_port, &mut self.diagnostics);
}
}
}
self.flat_graph.insert_edge(src, src_port, dst, dst_port)
}
/// Process operators and emit operator errors.
fn process_operator_errors(&mut self) {
self.make_operator_instances();
self.check_operator_errors();
self.warn_unused_port_indexing();
self.check_loop_errors();
}
/// Make `OperatorInstance`s for each operator node.
fn make_operator_instances(&mut self) {
self.flat_graph
.insert_node_op_insts_all(&mut self.diagnostics);
}
/// Validates that operators have valid number of inputs, outputs, & arguments.
/// Adds errors (and warnings) to `self.diagnostics`.
fn check_operator_errors(&mut self) {
for (node_id, node) in self.flat_graph.nodes() {
match node {
GraphNode::Operator(operator) => {
let Some(op_inst) = self.flat_graph.node_op_inst(node_id) else {
// Error already emitted by `insert_node_op_insts_all`.
continue;
};
let op_constraints = op_inst.op_constraints;
// Check number of args
if op_constraints.num_args != operator.args.len() {
self.diagnostics.push(Diagnostic::spanned(
operator.span(),
Level::Error,
format!(
"expected {} argument(s), found {}",
op_constraints.num_args,
operator.args.len()
),
));
}
// Check input/output (port) arity
/// Returns true if an error was found.
fn emit_arity_error(
operator: &Operator,
is_in: bool,
is_hard: bool,
degree: usize,
range: &dyn RangeTrait<usize>,
diagnostics: &mut Vec<Diagnostic>,
) -> bool {
let op_name = &*operator.name_string();
let message = format!(
"`{}` {} have {} {}, actually has {}.",
op_name,
if is_hard { "must" } else { "should" },
range.human_string(),
if is_in { "input(s)" } else { "output(s)" },
degree,
);
let out_of_range = !range.contains(°ree);
if out_of_range {
diagnostics.push(Diagnostic::spanned(
operator.span(),
if is_hard {
Level::Error
} else {
Level::Warning
},
message,
));
}
out_of_range
}
let inn_degree = self.flat_graph.node_degree_in(node_id);
let _ = emit_arity_error(
operator,
true,
true,
inn_degree,
op_constraints.hard_range_inn,
&mut self.diagnostics,
) || emit_arity_error(
operator,
true,
false,
inn_degree,
op_constraints.soft_range_inn,
&mut self.diagnostics,
);
let out_degree = self.flat_graph.node_degree_out(node_id);
let _ = emit_arity_error(
operator,
false,
true,
out_degree,
op_constraints.hard_range_out,
&mut self.diagnostics,
) || emit_arity_error(
operator,
false,
false,
out_degree,
op_constraints.soft_range_out,
&mut self.diagnostics,
);
fn emit_port_error<'a>(
operator_span: Span,
expected_ports_fn: Option<fn() -> PortListSpec>,
actual_ports_iter: impl Iterator<Item = &'a PortIndexValue>,
input_output: &'static str,
diagnostics: &mut Vec<Diagnostic>,
) {
let Some(expected_ports_fn) = expected_ports_fn else {
return;
};
let PortListSpec::Fixed(expected_ports) = (expected_ports_fn)() else {
// Separate check inside of `demux` special case.
return;
};
let expected_ports: Vec<_> = expected_ports.into_iter().collect();
// Reject unexpected ports.
let ports: BTreeSet<_> = actual_ports_iter
// Use `inspect` before collecting into `BTreeSet` to ensure we get
// both error messages on duplicated port names.
.inspect(|actual_port_iv| {
// For each actually used port `port_index_value`, check if it is expected.
let is_expected = expected_ports.iter().any(|port_index| {
actual_port_iv == &&port_index.clone().into()
});
// If it is not expected, emit a diagnostic error.
if !is_expected {
diagnostics.push(Diagnostic::spanned(
actual_port_iv.span(),
Level::Error,
format!(
"Unexpected {} port: {}. Expected one of: `{}`",
input_output,
actual_port_iv.as_error_message_string(),
Itertools::intersperse(
expected_ports
.iter()
.map(|port| Cow::Owned(
port.to_token_stream().to_string()
)),
Cow::Borrowed("`, `")
).collect::<String>()
),
))
}
})
.collect();
// List missing expected ports.
let missing: Vec<_> = expected_ports
.into_iter()
.filter_map(|expected_port| {
let tokens = expected_port.to_token_stream();
if !ports.contains(&&expected_port.into()) {
Some(tokens)
} else {
None
}
})
.collect();
if !missing.is_empty() {
diagnostics.push(Diagnostic::spanned(
operator_span,
Level::Error,
format!(
"Missing expected {} port(s): `{}`.",
input_output,
Itertools::intersperse(
missing.into_iter().map(|port| Cow::Owned(
port.to_token_stream().to_string()
)),
Cow::Borrowed("`, `")
)
.collect::<String>()
),
));
}
}
emit_port_error(
operator.span(),
op_constraints.ports_inn,
self.flat_graph
.node_predecessor_edges(node_id)
.map(|edge_id| self.flat_graph.edge_ports(edge_id).1),
"input",
&mut self.diagnostics,
);
emit_port_error(
operator.span(),
op_constraints.ports_out,
self.flat_graph
.node_successor_edges(node_id)
.map(|edge_id| self.flat_graph.edge_ports(edge_id).0),
"output",
&mut self.diagnostics,
);
// Check that singleton references actually reference *stateful* operators.
{
let singletons_resolved =
self.flat_graph.node_singleton_references(node_id);
for (singleton_node_id, singleton_ident) in singletons_resolved
.iter()
.zip_eq(&*operator.singletons_referenced)
{
let &Some(singleton_node_id) = singleton_node_id else {
// Error already emitted by `connect_operator_links`, "Cannot find referenced name...".
continue;
};
let Some(ref_op_inst) = self.flat_graph.node_op_inst(singleton_node_id)
else {
// Error already emitted by `insert_node_op_insts_all`.
continue;
};
let ref_op_constraints = ref_op_inst.op_constraints;
if !ref_op_constraints.has_singleton_output {
self.diagnostics.push(Diagnostic::spanned(
singleton_ident.span(),
Level::Error,
format!(
"Cannot reference operator `{}`. Only operators with singleton state can be referenced.",
ref_op_constraints.name,
),
));
}
}
}
}
GraphNode::Handoff { .. } => todo!("Node::Handoff"),
GraphNode::ModuleBoundary { .. } => {
// Module boundaries don't require any checking.
}
}
}
}
/// Warns about unused port indexing referenced in [`Self::varname_ends`].
/// https://github.com/hydro-project/hydro/issues/1108
fn warn_unused_port_indexing(&mut self) {
for (_ident, varname_info) in self.varname_ends.iter() {
if !varname_info.inn_used {
Self::helper_check_unused_port(&mut self.diagnostics, &varname_info.ends, true);
}
if !varname_info.out_used {
Self::helper_check_unused_port(&mut self.diagnostics, &varname_info.ends, false);
}
}
}
/// Emit a warning to `diagnostics` for an unused port (i.e. if the port is specified for
/// reason).
fn helper_check_unused_port(diagnostics: &mut Vec<Diagnostic>, ends: &Ends, is_in: bool) {
let port = if is_in { &ends.inn } else { &ends.out };
if let Some((port, _)) = port {
if port.is_specified() {
diagnostics.push(Diagnostic::spanned(
port.span(),
Level::Error,
format!(
"{} port index is unused. (Is the port on the correct side?)",
if is_in { "Input" } else { "Output" },
),
));
}
}
}
/// Helper function.
/// Combine the port indexing information for indexing wrapped around a name.
/// Because the name may already have indexing, this may introduce double indexing (i.e. `[0][0]my_var[0][0]`)
/// which would be an error.
fn helper_combine_ends(
diagnostics: &mut Vec<Diagnostic>,
og_ends: Ends,
inn_port: PortIndexValue,
out_port: PortIndexValue,
) -> Ends {
Ends {
inn: Self::helper_combine_end(diagnostics, og_ends.inn, inn_port, "input"),
out: Self::helper_combine_end(diagnostics, og_ends.out, out_port, "output"),
}
}
/// Helper function.
/// Combine the port indexing info for one input or output.
fn helper_combine_end(
diagnostics: &mut Vec<Diagnostic>,
og: Option<(PortIndexValue, GraphDet)>,
other: PortIndexValue,
input_output: &'static str,
) -> Option<(PortIndexValue, GraphDet)> {
// TODO(mingwei): minification pass over this code?
let other_span = other.span();
let (og_port, og_node) = og?;
match og_port.combine(other) {
Ok(combined_port) => Some((combined_port, og_node)),
Err(og_port) => {
// TODO(mingwei): Use `MultiSpan` once `proc_macro2` supports it.
diagnostics.push(Diagnostic::spanned(
og_port.span(),
Level::Error,
format!(
"Indexing on {} is overwritten below ({}) (1/2).",
input_output,
PrettySpan(other_span),
),
));
diagnostics.push(Diagnostic::spanned(
other_span,
Level::Error,
format!(
"Cannot index on already-indexed {}, previously indexed above ({}) (2/2).",
input_output,
PrettySpan(og_port.span()),
),
));
// When errored, just use original and ignore OTHER port to minimize
// noisy/extra diagnostics.
Some((og_port, og_node))
}
}
}
/// Check for loop context-related errors.
fn check_loop_errors(&mut self) {
// All inputs must be declared in the root block.
for (node_id, node) in self.flat_graph.nodes() {
let Some(op_inst) = self.flat_graph.node_op_inst(node_id) else {
continue;
};
let loop_id = self.flat_graph.node_loop(node_id);
// Source operators must be at the top level.
if Some(FloType::Source) == op_inst.op_constraints.flo_type && loop_id.is_some() {
self.diagnostics.push(Diagnostic::spanned(
node.span(),
Level::Error,
format!(
"Source operator `{}(...)` must be at the root level, not within any `loop {{ ... }}` contexts.",
op_inst.op_constraints.name
)
));
}
}
// Check windowing and un-windowing operators, for loop inputs and outputs respectively.
for (_edge_id, (pred_id, node_id)) in self.flat_graph.edges() {
let Some(op_inst) = self.flat_graph.node_op_inst(node_id) else {
continue;
};
let flo_type = &op_inst.op_constraints.flo_type;
let pred_loop_id = self.flat_graph.node_loop(pred_id);
let loop_id = self.flat_graph.node_loop(node_id);
let span = self.flat_graph.node(node_id).span();
let (is_input, is_output) = {
let parent_pred_loop_id =
pred_loop_id.and_then(|lid| self.flat_graph.loop_parent(lid));
let parent_loop_id = loop_id.and_then(|lid| self.flat_graph.loop_parent(lid));
let is_same = pred_loop_id == loop_id;
let is_input = !is_same && parent_loop_id == pred_loop_id;
let is_output = !is_same && parent_pred_loop_id == loop_id;
if !(is_input || is_output || is_same) {
self.diagnostics.push(Diagnostic::spanned(
span,
Level::Error,
"Operator input edge may not cross multiple loop contexts.",
));
continue;
}
(is_input, is_output)
};
match flo_type {
None => {
if is_input {
self.diagnostics.push(Diagnostic::spanned(
span,
Level::Error,
format!(
"Operator `{}(...)` entering a loop context must be a windowing operator, but is not.",
op_inst.op_constraints.name
)
));
}
if is_output {
self.diagnostics.push(Diagnostic::spanned(
span,
Level::Error,
format!(
"Operator `{}(...)` exiting a loop context must be an un-windowing operator, but is not.",
op_inst.op_constraints.name
)
));
}
}
Some(FloType::Windowing) => {
if !is_input {
self.diagnostics.push(Diagnostic::spanned(
span,
Level::Error,
format!(
"Windowing operator `{}(...)` must be the first input operator into a `loop {{ ... }} context.",
op_inst.op_constraints.name
)
));
}
}
Some(FloType::Unwindowing) => {
if !is_output {
self.diagnostics.push(Diagnostic::spanned(
span,
Level::Error,
format!(
"Un-windowing operator `{}(...)` must be the first output operator after exiting a `loop {{ ... }} context.",
op_inst.op_constraints.name
)
));
}
}
Some(FloType::Source) => {
// Handled above.
}
}
}
// Must be a DAG (excluding `next_tick()` operators).
// TODO(mingwei): Nested loop blocks should count as a single node.
for (loop_id, loop_nodes) in self.flat_graph.loops() {
// Filter out `defer_tick()` operators.
let filter_defer_tick = |&node_id: &GraphNodeId| {
self.flat_graph
.node_op_inst(node_id)
.map(|op_inst| DEFER_TICK.name != op_inst.op_constraints.name)
.unwrap_or(true)
};
let topo_sort_result = graph_algorithms::topo_sort(
loop_nodes.iter().copied().filter(filter_defer_tick),
|dst| {
self.flat_graph
.node_predecessor_nodes(dst)
.filter(|&src| Some(loop_id) == self.flat_graph.node_loop(src))
.filter(filter_defer_tick)
},
);
if let Err(cycle) = topo_sort_result {
let len = cycle.len();
for (i, node_id) in cycle.into_iter().enumerate() {
let span = self.flat_graph.node(node_id).span();
self.diagnostics.push(Diagnostic::spanned(
span,
Level::Error,
format!(
"Operator forms an illegal cycle within a `loop {{ ... }}` block ({}/{}).",
i + 1,
len
),
));
}
}
}
}
}