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Abstract
Building on prior work on distributed databases and the CALM Theorem, we define and study the
question of free termination: in the absence of distributed coordination, what query properties allow
nodes in a distributed (database) system to unilaterally terminate execution even though they may
receive additional data or messages in the future? This completeness question is complementary to
the soundness questions studied in the CALM literature. We also develop a new model based on
semiautomata that allows us to bridge from the relational transducer model of the CALM papers to
algebraic models that are popular among software engineers (e.g. CRDTs) and of increasing interest
to database theory for datalog extensions and incremental view maintenance.
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1 Introduction

Distributed data systems have become a central topic in computing over the last decade due
to a confluence of factors including cloud computing, increasing data growth and massively
popular global-scale services. A central technical challenge in distributed computing and
databases is the use – and avoidance – of coordination mechanisms [8, 16]. Coordination
in distributed systems is both slow and susceptible to unavailability via the CAP Theorem.
In response, theoreticians have studied the question of what programs are computable in a
distributed fashion without the use of coordination, most notably in the CALM Theorem [5,
4, 29, 7] for coordination-free queries. Meanwhile, language designers and systems researchers
have begun building systems that encourage coordination-free programming, exemplified by
Conflict-free Replicated Data Types (CRDTs) [26], which are popular data structure libraries
based on semi-lattices.

In this work we push beyond CALM in two directions. The first is to consider a
different proof goal. The work on CALM is fundamentally about a soundness property called
coordination-free eventual consistency: in the absence of coordination, what properties of
a program ensure that each node in a distributed system will emit only correct program
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32:2 The Free Termination Property of Queries over Time

outputs over time? Here we pose a complementary completeness question, free termination:
in the absence of coordination, what properties of a program ensure that each node in a
distributed system can unilaterally terminate after producing all its (correct) results, even
if updates may arrive from other nodes in the future? From a practical perspective, free
termination is critical to any user or client that requires a complete answer before proceeding.

The second ambition of this paper is to generalize the theory in this domain from its
roots in relational transducers as explored in the CALM papers, and extend it to the context
of the algebraic frameworks that are native to CRDTs, and of increasing interest in database
research [2, 18, 9, 19, 20]. To that end, we introduce a general model that can capture what
guarantees can be offered without coordination in both settings. Our model is based on
queries over semiautomata and the guarantees to users are captured as properties of those
semiautomata.

The main contributions of the paper are as follows:
1. Using semiautomata, we introduce the notion of free termination (Section 3) in a state

transition system, and show how it can be used to model different types of applications,
including incremental view maintenance [9] and the pre-semiring data model used to
extend Datalog [2].

2. We then explore how the algebraic properties of the system and the query affect free
termination (Section 4.1). Among our results, we show that under acyclic state modifica-
tions (commonly found in CRDTs), the only queries with free termination are a particular
class of threshold queries over the natural partial order of states. We also show that
if updates form a group or ring (e.g., in incremental view maintenance models), free
termination cannot be achieved.

3. We study how to model coordination-free query computation in a distributed setting
via the lens of free termination (Section 5). Interestingly, we show that by using the
notion of free termination we can achieve a stronger and more fine-grained notion of
coordination-freeness that applies to a pair of a query and an input. We show how
coordination-freeness for network transducers as defined in [5] is a specific case of our
more general notion of coordination-freeness. This allows us to characterize other queries
as coordination-free, for example, antitone queries.

4. Finally, we look into free termination when the state space is finite (Section 6). We give
a linear-time algorithm for deciding all free termination states in a transition system and
also study how to perform state minimization.

Motivating Examples
Before we proceed, we provide some motivating examples from the literature. We start with
the domain of CRDTs, which have become quite popular with software engineers and shed
light on both of our goals.

Grow-Only Set CRDT. A common CRDT is the “grow-only set” CRDT: this is a replicated
distributed set where each machine propagates its local set to other machines in the system.
Upon receiving a message containing the local set at another machine, the local machine will
apply its “merge” operation, modifying its local state to be the union of its current state
and the incoming set. This process of propagation over an asynchronous network introduces
non-determinism as messages might be delivered in a different order than they are sent and
messages may arrive multiple times. The fact that set union forms a semi-lattice ensures
that, regardless of these sources of network nondeterminism, the state at each machine will
eventually converge to the same value. That eventual value is the union of all of the initial
states at each machine and the time at which it is reached is called the quiescence point.
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Grow-only sets illustrate the point that CRDTs provide coordination-free consistency,
but do not support free termination. In the absence of coordination, we do not have a
mechanism for determining locally whether we have received all the elements in the network –
i.e. whether we have reached a quiescence point. Without a guarantee of quiescence, what
should we do to answer a query from a user? CRDTs allow arbitrary queries at any time
and make no guarantee on the relationship between the query result at time t and the query
result at the quiescence point. For example, consider the query Q(x) = R(x) − T (x). A
value (a) may be returned at time t, but eventually be excluded from the final output via
subsequent “merges” into T (a). This is not a particularly satisfactory contract between the
system and the user: what good is distributed state if you do not know when you can query
it reliably?

Threshold Queries. Threshold queries characterize a class of queries over CRDTs in which
a machine is able to unilaterally detect that the output will never change regardless of future
applications of the merge operation (set union in our example). For example, consider the
query Q() = |R(x)| > 10. This boolean query is monotone with respect to the partial order
of our semilattice (which is ordered by subset containment). Since the merge operation can
only increase the position in the partial order, once the local state contains more than ten
tuples in R, the result of the query is guaranteed to be the same at the quiescence time. By
contrast, if the quiescence-time answer to this query is false – i.e. ¬(|R(x)| > 10) – then
no machine will ever return an answer to this query. From a local perspective, a machine
cannot know if there is some additional element out there that it has not heard about and
will someday need to union into its local state. Threshold queries, while useful, only offer
free termination for database instances where the answer is true!

CALM and Relational Transducers. The CALM Theorem [5] uses relational transducer
networks [1] to prove the relationship between queries expressed in monotonic logic and
coordination-freeness. This formalism allows for the expression of distributed programs in
terms of logical formulas that are evaluated iteratively on each machine and communicate state
between machines. Similar models have been used by developers to implement distributed
programs (e.g., Webdamlog [1], Bloom [3]). While both the CALM theorem and CRDTs use
proofs based on notions of monotonicity, there remains a gap between the logic formalism of
the CALM theorem and the state-based formalisms of other work on coordination-freeness. In
this paper, we are not interested in the programmability differences between these approaches
but exclusively in reasoning about guarantees on query results without coordination. In
departing from the realm of logic programming, we want to reason naturally about programs
beyond the boolean or relational setting. For example, consider a system that takes on
integer values and supports the multiplication operation by a user-specified input integer.
Now consider the query “is the running product divisible by two?”. This query is not
monotone with respect to the traditional ordering of the integers, but it can be computed
coordination-free on input instances that contain any even number under the free-termination
framework we introduce throughout this paper. Once we have multiplied by an even number,
all possible future states will return True on this query.

As mentioned above, transducers were used to prove coordination-free consistency guar-
antees, but they do not directly address termination. As an example, consider a network of
transducers supporting the Datalog language, and a simple program like transitive closure.
Transducers accumulate knowledge about the set of paths in the global input, and once they
learn about a path they can output it with certainty, but they will never conclude that they
have finished finding new paths. Indeed, this depends on the database instance! We will
return to this point in Section 5.

ICDT 2025
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2 Related Work

The theory of what is computable without coordination in a distributed setting has been
studied across different research communities and different theoretical models. In database
theory, this has been studied in terms of the CALM Theorem (“Consistency as Logical
Monotonicity”) [15, 5, 4, 29, 7] using the relational transducer model of computation [1].

In related work in the programming languages community, conflict-free replicated data
types (CRDTs) [27] achieve coordination-free programs via the algebraic properties of
functions that can modify the state of data. CRDTs have found popularity amongst
practicing software developers and are used in a variety of production software systems
including Redis, Riak, ElectricSQL, SQLSync, Ditto, JupyterLab, and SoundCloud.

CRDTs have been criticized for the guarantees that they offer [22]. To resolve this
gap, several systems have combined semilattice state convergence with monotonic queries or
functions over that state, including BloomL [11], Lasp [23, 10], Datafun [6] and Hydroflow [17].

For coordination-free termination detection, LVars [21] was early in proposing the use of
monotone threshold functions from any semilattice L to a smaller lattice like the booleans
(B,∨). If a computation exceeds a threshold in L, the threshold function evaluates to true.
Since true is the top (supremum) of (B,∨), nothing can change the result, so computation
can safely terminate. This idea can be used in the languages mentioned above.

Efforts at adding non-monotonic functions or queries to these languages have typically
fallen back to the use of coordination. Languages like Gallifrey [24] and BloomL only guarantee
consistency when non-monotone constructs are preceded by a round of coordination.

Beyond semilattices, recent research has explored alternative algebraic structures for data
systems that each offer their own potential optimizations. Pre-semirings have been shown
to offer semi-naive fixpoint evaluation in Datalogo [2]. Abelian groups [9] and rings [19, 20]
have been shown to enable efficient incremental computation of materialized views. While
each of these algebraic structures has shown promise in database contexts, one cannot always
make use of them simultaneously (Section 4.2).

In this work, we formalize the free termination property for certainty of query answers,
generalize it beyond the case of monotonic state with threshold queries, and show directly how
this property manifests in non-CRDT settings like Datalog, relational transducer networks,
and algebraic models of incremental view maintenance.

3 Definitions of Free Termination

We will capture different scenarios in distributed computation using the general computational
model of a semiautomaton [14]. We assume that each node keeps a state that is represented
by an element s in a (finite or infinite) state space D. Computation at each node is modeled
by a modification of the state s ∈ D: the transition (or update) function U : D × L → D

takes a state s, a parameter ℓ ∈ L from some domain L and outputs a state that s can
transition to. We will often write s

ℓ−→ s′ to denote that U(s, ℓ) = s′ (we will often omit ℓ if
it is not of importance).

▶ Definition 1 (Semiautomaton). A semiautomaton is a triple S = (D, L, U), where D is
a set called the state space, L is a set called the parameter space, and U : D × L→ D is a
total function called the update function.

The update function U can take different forms. A common scenario is when L = D,
and then U : D ×D → D is a binary function. Another interesting case is when the update
is parameter-independent , meaning the state transition is independent of the parameter
ℓ ∈ L. When the state space D is finite, then S can be thought of as a deterministic finite
automaton (DFA), but without the initial state or accept states.
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A computation trace in a semiautomaton with initial state s0 is a (possibly infinite)
sequence of states s0 −→ s1 −→ s2 −→ . . . . We say that s ∈ D reaches a state s′ ∈ D if there is
a finite sequence s→ · · · → s′; we will use the shorthand notation s ↠ s′ for this and often
say that s reaches s′. We define Uk(s) to be the set of states reachable from s via a sequence
of at most length k. We also define the closure of s, U∞(s) =

⋃
k≥0 Uk(s) to be the set of

states reachable from s.

▶ Definition 2 (Transition Graph). Given a semiautomaton S = (D, L, U), its transition graph
G[S] is a labelled directed graph with vertex set D and edge set {(s, s′) : ℓ | s′ = U(s, ℓ)}.

The output of a computation in a semiautomaton model is captured by a query Q, which
is a total function Q : D → R that maps each state to an element of a (finite or infinite)
query range R. We can now define the main notion in this paper.

▶ Definition 3 (Free Termination State). Given a semiautomaton S = (D, L, U) and a
query Q : D → R, we say that a state s ∈ D is a free termination state if for all states
s′ ∈ U∞(s) : Q(s) = Q(s′).

In other words, if s is a free termination state, any computation trace with initial state s

will leave the query result unchanged. This means that the distributed system can output
the value of Q without the need to continue the computation.

This model is inspired by algebraic models of data systems such as CRDTs and the group
and ring models of incremental view maintenance [9, 19]. It is also inspired by application-
level consistency [12] which considers only the observable state to users (our query result) as
important for application guarantees rather than the internal system state.

The behavior of free termination states can vary significantly. In the example below, we
will present some common scenarios of free termination using DFAs; we will see some of
these cases throughout the paper.

▶ Example 4. To map a DFA into the model of queries over semiautomatons, the transitions
are the same in both models, but the query Q for the semiautomaton returns true if the DFA
state is accepting, otherwise false. Figure 1 shows four different scenarios of free termination:
1. A free termination state is reachable from each state and all free termination states return

the same query result (see Figure 1a).
2. All paths lead to a free termination state but different free termination states return

different query results (see Figure 1b).
3. There are no free termination states (see Figure 1c).
4. Some paths lead to free termination states and others do not (see Figure 1d).

We will see that certain algebraic properties of the semiautomaton and the query imply
that we have to fall in one of these cases. For example, if the query is commutative
(Appendix A), then free termination falls in the first scenario, while if the semiautomaton
forms a group structure this means that no free termination state exists (Section 4.2).

Applications of Free Termination

We will next describe a few concrete instantiations of our computational model, which will
be used throughout this paper.

ICDT 2025
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Figure 1 Four DFAs with labels {a, b, c} showing four different categories of free termination.
The doubly-lined states represent the accepting states of the DFA (query is true).

Incremental Query Computation. In the first instantiation, we consider D to be the set of
all instances over a fixed relational schema R. The update function U allows modification
only by inserting a tuple to the instance; in other words, the set L is the set of all tuples
over R and U(I, t) = I ∪ {t}. We will refer to this semiautomaton as S∪. A trace in S∪ is a
sequence of single-tuple insertions to the initial database. Let us consider a query Q that
is a Boolean Conjunctive Query, hence it maps the database instance (state) to its range
R = {T, F}.

The characterization of free termination states for Q is fairly straightforward. Indeed,
take any instance I in the state space such that Q(I) is true; then, because Q is a monotone
query and the updates are only tuple insertions, any I ′ reachable from I will also have
Q(I ′) = T. Thus, such an I will be a free termination state. On the other hand, if Q(I) = F,
free termination is not possible since we can always insert a sequence of tuples to make Q

true. As we will see later on, this is a special case of a more general characterization of free
termination.

State-based CRDTs. A state-based CRDT defines three functions over its state D: an
update operation that allows state to be mutated from outside the system (update : D×L→
D), a merge operation that determines how the states of two replicas can combine to converge
to the same state (merge : D ×D → D), and a query operation that defines what is visible
to the user from the internal state (Q : D → R). The basic idea is that updates from users
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can modify the state of any replica in the distributed system and asynchronous gossip of
replica states in the background will ensure each replica eventually converges to the same
state regardless of duplicated or out-of-order message delivery. To guarantee this convergence
(formally known as strong eventual consistency), the merge operation must be associative,
commutative, and idempotent and the update operation must be inflationary with respect to
the partial ordering induced by the merge operation. In Appendix B, we give four popular
examples of state-based CRDTs.

To capture a state-based CRDT in our model, we define it as a semiautomaton S□ =
(D, L, U), where D is the set of states, and the update U captures both the update and
merge operation of the CRDT. Specifically, U(s, ⟨u, ℓ⟩) = update(s, ℓ) and U(s, ⟨m, s′⟩) =
merge(s, s′). A crucial property of a state-based CRDT is that the partial order induced
by the merge operation forms a join-semilattice. Observe that because of this, the state
transition system for a state-based CRDT will always be acyclic - a property that we will
explore in detail in Section 4.1.

Fixpoint Computation. Consider a partial order ⊑ over a domain D, and take f : D → D to
be a monotone function w.r.t. ⊑. Further consider a (parameter-independent) semiautomaton
and assume that it captures a fixpoint computation from a starting state s0 → f(s0) →
f(f(s0))→ . . . that eventually reaches a state s with f(s) = s after finitely many steps. For
any query Q over D, the fixpoint state s is a free termination state (no other state is reachable
from it). However, the structure of Q may allow us to find an earlier free termination state
before we even reach the fixpoint.

As an example, consider the case where the fixpoint computation is an iterative (naive or
semi-naive) evaluation of a Datalog program P on an instance I. Here, the starting state is
the set of EDBs and each iteration during evaluation is an update that adds to the current
state the newly produced IDB facts via the rules of the program. Our query Q is a view
over the IDBs of the program P , which can be thought of as the “target” of P . Concretely,
consider the following Datalog program that determines whether there exists a path between
vertices s and t in a graph.

P (x, y)← Edge(x, y)
P (x, y)← P (x, z), Edge(z, y)

Q()← P (s, t)

For this program, we can freely terminate as long as the state contains the IDB fact
P (s, t), even before we have reached a fixpoint. This is because the fixpoint computation is
monotone w.r.t. set containment (so the update U is inflationary) and Q is a monotone query
as well w.r.t. the partial order F ⊑ T. If we replaced Q with another query Q′()← P (x, x)
which detects the presence of a cycle in the graph, we also can freely terminate earlier as long
as the state contains a cycle. As we will see in the next section, both of these are examples
of Boolean threshold queries.

Datalogo [2] is an extension of Datalog to support recursive queries over partially ordered
pre-semirings (POPS). This can also be viewed as a parameter-independent fixpoint compu-
tation. Datalogo requires that both semiring operations be monotone w.r.t. the partial order
of the POPS. This tells us that the update transition for any Datalogo graph is inflationary,
which we show in Proposition 13 implies any Boolean monotone query will have a free
termination state. For instance, the query Q below that computes whether the distance
between vertices s, t in a graph is at most 10.

P (x, y)← min(Edge(x, y), min{(P (x, z) + Edge(z, y)))
Q()← P (s, t) ≤ 10

ICDT 2025
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Figure 2 A state transition system for the set union state transition over the universe {a, b, c}.
The green dotted line across the states indicates the threshold line for the query “the set contains
an a”. The doubly-lined states return True and single-lined states return False in the query.

4 Algebraic Properties and Free Termination

In this section, we explore how the algebraic structures of the semiautomaton and the query
affect free termination.

4.1 Partial Orders
Consider the example in Figure 2 of a semiautomaton in which update labels are singleton
sets ({a}, {b}, or {c}) and the update applies set union of the incoming singleton to the
current state. Labels on edges depict the incoming singleton that transitions from the source
state to the destination state. We can think of this system as inputs from ({{a}, {b}, or
{c}}) streaming in over time and we wish to compute some query over this stream of inputs
without ever knowing if the stream has ended. The figure depicts the query “contains an a”
over this semiautomaton, illustrated by the dotted green line that is the “threshold” after
which states in the partial order return True in the query. Observe that the same graph
with the edge labels and self-loops removed is the Hasse diagram of the set/subset partial
ordering over atoms {a, b, c}.

We will utilize properties of this example to reason about its free termination states. In
this particular case, the update function is inflationary. If we view the ordering of B as
F ⊑ T then we can see that Q is monotone. Formally, to define what it means for Q to
be monotone we must have some partial order on the sets D and R. Recall that a binary
relation ⊑ is a partial order if it is reflexive, transitive and antisymmetric.

▶ Definition 5 (Inflationary). Let S = (D, L, U) be a semiautomaton equipped with a partial
order ⊑D on D. S is inflationary (resp. deflationary) w.r.t ⊑D if whenever s −→ s′ then
s ⊑D s′ (resp. s ⊒D s′).

In an inflationary semiautomaton, any update of a state will always follow the underlying
partial order of the state space. A deflationary system will follow the partial order in reverse.
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In many cases, we can define a “natural” partial order on D via the update function U .
We say that U is acyclic in S if the transition graph G[S] is acyclic (excluding self-loops). The
following proposition follows from the fact that the transitive closure of a directed acyclic
graph is a partial order.

▶ Proposition 6. Let S = (D, L, U) and U be acyclic. Then, the relation s ⊑U s′ ⇔ s ↠ s′

is a partial order for D. Moreover, S is inflationary w.r.t. ⊑U .

Whenever U is acyclic, we will refer to the partial order ⊑U as the natural partial order of
S. This is akin to the notion of natural orders for algebraic structures such as pre-semirings [2].
If the update transition is a binary operation U : D×D → D forming a monoid (is associative
and has an identity) then the natural ordering would be the standard x ⊑U y iff ∃z : x

z−→ y.

▶ Example 7. Consider again the incremental query computation semiautomaton S∪. The
update operation is acyclic (since an update only adds tuples to the instance), and the
natural partial order is set containment of the states.

▶ Definition 8 (Monotone Query). Let S be a semiautomaton equipped with a partial order
⊑D on D. Let R be a set with partial order ⊑R. A query Q : D → R is monotone (resp.
antitone) w.r.t. S if s ⊑D s′ implies Q(s) ⊑R Q(s′) (resp. Q(s) ⊒R Q(s′)).

Free Termination Conditions. Intuitively, if the input state will only increase in the partial
order because U is inflationary, and Q is monotone, then over time the output of Q will
always stay the same or increase. However, free termination is concerned specifically with
when the output of Q will stay the same. We identify two general conditions that guarantee
free termination in this case.

▶ Proposition 9. Let S = (D, L, U) be a semiautomaton equipped with a partial order ⊑D.
If S is inflationary (resp. deflationary) and s ∈ D is a maximal (resp. minimal) element of
⊑D, then s is a free termination state.

Proof. Consider any state s′ ∈ D such that s′ ∈ U∞(s). Then, because S is inflationary
and ⊑D is transitive, we must have that s ⊑D s′. But s is a maximal element of ⊑D, hence
s = s′. Thus, Q(s) = Q(s′). The proof for when U is deflationary and s a minimal element
is symmetrical. ◀

In some cases, we will consider partial orders ⊑D with a bottom element ⊥ or a top
element ⊤: then, we have that for every s ∈ D, ⊥ ⊑D s or s ⊑D ⊤ respectively. Note that if
a top element exists, then ⊤ is a free termination state by the above proposition.

▶ Proposition 10. Let S = (D, L, U) be a semiautomaton with a partial order ⊑D. Let
Q : D → R be a query, with R equipped with a partial order ⊑R. If S is inflationary, Q is
monotone (resp. antitone), and Q(s) is a maximal (resp. minimal) element of ⊑R, then
s ∈ D is a free termination state.

Proof. Consider any state s′ ∈ D such that s′ ∈ U∞(s). Then, because S is inflationary and
⊑D is transitive, we must have that s ⊑D s′. From the monotonicity of Q, this implies that
Q(s) ⊑R Q(s′). But because Q(s) is maximal, we must have that Q(s′) = Q(s). The case
where Q is antitone and Q(s) is a minimal element is symmetric. ◀

▶ Example 11. A classic example of an antitone query over B is the use of a universal
quantifier ∀. Consider the natural inverse of the existential quantifier ∃ used in our first
example. If we let Q be “every element of the input stream is an {a}” then we can freely
terminate when the answer becomes F (as soon as any non-“a” streams in).

ICDT 2025
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Threshold Queries. In this part, we ask the following question: what classes of queries
have free termination states? We will restrict our attention to settings where the behavior
of S is inflationary as threshold queries are naturally valuable in this setting. Further, all
state-based CRDTs are examples of S that are inflationary. We define first an important
class of queries, inspired by the LVars [21] work on coordination-free programming languages,
called Threshold Queries. Recall that an antichain in a partial order ⊑ with domain D is a
subset C ⊆ D such that no two distinct elements of C are comparable under ⊑.

▶ Definition 12 (Boolean Threshold Query). Let ⊑ be a partial order with domain D, and
C ⊆ D be an antichain. A Boolean threshold query QC : D → B with threshold line C is the
Boolean query that returns the value QC(s) =

∨
c∈C(s ⊒ c).

Boolean threshold queries are monotone and this allows us to obtain the free termination
states in this case.

▶ Proposition 13. Let S = (D, L, U) be an inflationary semiautomaton equipped with a
partial order ⊑D. Let QC be a Boolean threshold query. Then, the free termination states
are exactly the elements of D that are at or above C.

Proof. We first show that QC must be monotone. Indeed, let s ⊑D s′ and assume QC(s)
is true. Then, there exists c ∈ C such that s ⊒D c. But since s ⊑D s′, s′ ⊒D c and QC(s′)
must also be true. Since T is the maximal element of B, all states s such that QC(s) is true
are free termination states. Note that any element of D that is at or above the threshold
line C has this property. ◀

We should note here that any monotone Boolean query must be a Boolean threshold
query (excluding the trivial query that is always false). In this work, we do not wish to
limit ourselves to threshold queries that return only true, or even to thresholds where each c

returns the same value Q(c). We can generalize the concept of Boolean threshold queries
with the following result.

▶ Proposition 14. Let Q be a query with at least one free termination state for a semiauto-
maton S = (D, L, U) where U is acyclic. Then, there exists an antichain C ⊆ D w.r.t. the
natural partial order ⊑U such that whenever c ⊑U s for some c ∈ C, Q(s) = Q(c).

Proof. Let F ⊆ D be the set of free termination states. F cannot be empty. Let Fτ be the
minimal states in F w.r.t. ⊑U . By construction, Fτ forms an antichain and will be our set
C. Take now any state s ∈ D such that c ⊑U s for some c ∈ C. Since c is a free termination
state and c reaches s, it must be that Q(c) = Q(s). ◀

In other words, there exists a threshold (formed by the antichain C) such that at or above
the threshold the behavior of Q is governed completely by the threshold states. However,
the behavior of Q outside of this threshold space has no restriction (unlike in the case of
Boolean monotone queries).

Join Semilattices. When the partial order has further algebraic structure, we can char-
acterize the behavior of free termination states more precisely. Here, we consider the case
where S has a natural partial order ⊑U and this order is a join-semilattice (this means that
there is a least upper bound for any nonempty finite subset of D).

▶ Proposition 15. Let S = (D, L, U) be a semiautomaton where ⊑U forms a join-semilattice.
Then, for any query Q, all free termination states return the same value.
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Proof. Indeed, take any two free termination states s1, s2. Since ⊑U is a join-semilattice,
there exists a least upper bound s such that s1 ⊑U s and s2 ⊑U s. Since ⊑U is the natural
partial order, s1 ↠ s and s2 ↠ s. But s1, s2 are free termination states, so it must be that
Q(s1) = Q(s) and Q(s2) = Q(s). Thus, Q(s1) = Q(s2). ◀

As a corollary of the above proposition, any free termination state in a state-based CRDT
must have the same value. A special case is when the natural partial order has a top element
⊤; in this case, all free termination states must take the value of Q(⊤).

▶ Proposition 16. Let S = (D, L, U) be a semiautomaton where ⊑U forms a join-semilattice.
If a query Q has a free termination state in S, then any state can reach a free termination
state.

In other words, if there exists a free termination state, it is possible to reach a free
termination state from whichever state we currently are in (with an appropriate set of
updates).

Proof. Let s be the current state and st be a free termination state. Since ⊑U is a join-
semilattice, there exists a least upper bound s′ such that s ⊑U s′ and st ⊑U s′. Since ⊑U is
the natural partial order, s→ s′ and st → s′. But then s′ must also be a free termination
state. ◀

One would be tempted to think that monotone (or antitone) queries are the only ones
that have free termination states in a join-semilattice, but this is not true even for Boolean
queries. Take for example the semiautomaton S∪ with the Boolean query Q() = R(c)∧¬S(c)
for some constant c. This query is neither monotone nor antitone, since, for example, it
returns false on {R(a)}, true on {R(a), R(c)}, and false on {R(a), R(c), S(c)}. However, it
has free termination states: these are the states in which the tuple S(c) is in the instance.

4.2 Group-Like Structures
If U is not acyclic, then we can construct examples where free termination is not possible.
We will use the notions of inverses and identity values from groups, but to generalize beyond
binary update operations U : D ×D → D we must define these terms for the general case of
transition graphs.

▶ Definition 17. Let S = (D, L, U) be a semiautomaton. A state id ∈ D is called an identity
state if id ↠ s for every s ∈ D. A state s ∈ D is called invertible if it can reach an identity
state.

We call the following theorem “the inverse curse theorem”.

▶ Theorem 18. Let S = (D, L, U) be a semiautomaton, and Q : D → R be a non-constant
query. If every state of D is invertible, then Q has no free termination states in S.

Proof. Suppose that some state s ∈ D freely terminates. Since Q is not constant, there
exists some state s′ ∈ D such that Q(s) ̸= Q(s′). Since s is invertible, we have that s ↠ id,
where id is an identity element. By the definition of an identity element, id ↠ s′. Hence,
s ↠ s′, which contradicts the fact that s is a free termination state. ◀

▶ Example 19. As an example, consider the case where D = Z, and let U(i, +) = i + 1 and
U(i,−) = i− 1, i.e., we have a counter that can be incremented or decremented. Then, any
state in D is an identity state and invertible, so any query Q has no free termination states
unless it is constant.
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When U : D × D → D and (D, U) forms a group (U has identity element and every
element has an inverse), then we obtain the following corollary:

▶ Corollary 20. Let S = (D, L, U) be a semiautomaton such that (D, U) forms a group. If
Q is not a constant query, then Q has no free termination states.

This corollary tells us that an update function that forms a group precludes the possibility
of free termination. It also tells us that in view maintenance, which often studies rings rather
than semirings, free termination is impossible. This is consistent with the monotonicity lens
on threshold queries from CRDTs [22] where an inverse corresponds to moving backward in
the partial order, which prevents the possibility of threshold queries with free termination
states. The practical benefits of having inverses in CRDTs to allow “undo” operations have
been discussed in [13] and [25]. This is an interesting dichotomy. Two parallel lines of work
have shown the value of invertibility in data systems (DBSP [9], DBToaster [20]) and the
value of coordination-free monotone queries (CALM theorem, CRDTs), but the benefits of
these properties appear mutually exclusive.

5 Free Termination in Distributed Systems

In this section, we will study the problem of distributively computing a query in a coordination-
free manner via the lens of free termination. Both transducer networks [5] and CRDTs offer
coordination-free models of eventual convergence, i.e., the existence of a time (called the
quiescence point) where the query result converges. However, without the ability of a machine
to determine whether it has already reached such a quiescence point, the applicability of this
notion in practical systems is limited [22]. If a user wants to read the (complete) output of a
transducer network, eventual consistency cannot provide a certain answer.

By definition, free termination can determine when a complete answer can be given with
certainty and hence aligns with the need for distributed systems to promptly respond to
user requests. However, this stronger guarantee warrants a more fine-grained definition of
coordination-freeness. In particular, we will need to talk about coordination-freeness as a
property of a query and its input. This is in contrast to the CALM Theorem [5], which talks
about coordination-freeness as a property of an entire query.

5.1 Distributed Model
Our task is to compute a query Q over a relational instance I defined over a schema R over
a network N . A network N is defined as a finite, connected, undirected graph over a set
of vertices V . Initially, the instance I is horizontally partitioned across the nodes in the
network.

The distributed computational model we consider here is a simplified version of the
relational transducer network model used by Ameloot et al. In particular, we leverage the
equivalence between oblivious transducers and coordination-freeness proven in [5] to focus
on oblivious networks and specifically a type of communication protocol used by many
constructions in [5] called network flooding . In this construction, nodes attempt to achieve
eventual consistency by broadcasting all their local information to their neighbors and sending
no other messages. More precisely, the computation in each node will be captured by the
semiautomaton S∪, where each state is an instance over R and each transition adds a new
tuple in the instance. This roughly corresponds to an oblivious, inflationary, and monotone
relational transducer, with the critical difference that there is no output generated – only
the state is modified. Nodes can communicate by sending a tuple from their local state to be
added to the instance of any neighboring node.
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For now, we will focus on Boolean queries. Formally, a configuration of the network is
a triple of mappings γ = (state, buf, ready), where state maps each node in V to a state
in S∪, buf maps each node in V to a finite multiset of facts from R called a buffer, and
ready maps each node to {F, T}. Initially, each state contains only the tuples in I from the
local partition, the buffers are empty, and ready(v) = F. There are three types of transitions
between two configurations:
Produce Transition: A node can move any tuple in its local state to the buffers of its

neighboring nodes;
Consume Transition: A node can update its state by removing a tuple from its local buffer

and adding it to its local instance.
Ready Transition: A node can set ready(v)← T.

Importantly, once ready is set to true, it cannot be further modified. Setting ready

to true denotes that the query result will not change. An algorithm for Q in this model
determines two things: (i) when to send each tuple to its neighbors, and (ii) if and when to
perform a ready transition.

A run ρ is an infinite sequence of transitions starting from an initial configuration. A run
is fair if every fact in every buffer is eventually taken out, and it is complete if every tuple
in a state is eventually sent to its neighbors. Finally, we say that an algorithm computes
the correct output of Q if for all inputs I and all horizontal partitionings of I, whenever
ready(v) = T, Q(state(v)) = Q(I). In every infinite run, there is a natural number n > 0
such that none of the states change after the n-th transition: we call this the quiescence
point. In a fair and complete run, each local state eventually converges to I, and hence at
the quiescence point state(v) = I for every node v ∈ V . However, without coordination, it is
not possible to know when a node has received the entire input.

▶ Definition 21 (Coordination-Free Correctness). We say that the pair (Q, I) is coordination-
free correct if there exists an algorithm such that in every fair and complete run the correct
output of Q is computed and ready is set to true at all nodes.

In other words, no matter how computation proceeds and how messages are exchanged,
at some point, the algorithm will perform the ready transition and hence know (without
coordination) that it has computed the correct result and thus can give it to the user.
The next proposition relates the above notion of fine-grained coordination-freeness to free
termination.

▶ Theorem 22. (Q, I) is coordination-free correct if and only if I is a free termination state
for Q in the semiautomaton S∪.

Proof. Suppose I is a free termination state. Consider the following algorithm: it will set
ready(v) to true exactly when state(v) is a free termination state for Q in S∪. This algorithm
is correct, since at the instance I ′ where ready becomes true, all reachable states maintain
the result of Q. Since I is reachable from I ′ (from the network flooding construction),
Q(I) = Q(I ′). Further, every fair and complete run reaches the quiescence point, when
state(v) = I, and thus the algorithm will set ready to true.

In the other direction, suppose (Q, I) is coordination-free correct and consider an algorithm
that computes the output correctly. At the quiescence point, when state(v) = I, this algorithm
must set ready to true (since the state will remain unchanged from that point on). But now
consider a fair and complete run for another input I ′ ⊇ I (which is a reachable state in S∪)
such that some node v receives first all of I. At this point, the algorithm would need to do
the ready transition. But because of correctness, it must be that Q(I) = Q(I ′). Hence, I is
a free termination state. ◀
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If the input is not a free termination state, the system will often need to perform some
coordination to get the user a concrete answer. We thus avoid coordination for a given query
on some inputs, but not all inputs! In practice, the distribution of inputs to a given system
is what determines how helpful free termination is.

We next discuss how we could define a notion of coordination-free correctness for the
entire query Q. As a first attempt, we could define Q to be coordination-free correct if (Q, I)
is coordination-free correct for every input I. From Theorem 22, this is equivalent to saying
that every input is free terminating, which happens only when Q is a constant query. Hence,
we need to slightly relax this notion, by requiring that (Q, I) is coordination-free correct for
some inputs.

▶ Definition 23. We say that a Boolean query Q is positively (resp. negatively) coordination-
free if (Q, I) is coordination-free correct for every input I such that Q(I) = T (resp.
Q(I) = F).

The notion of positive coordination-freeness is exactly the notion of query coordination-
freeness used for transducer networks in [5]. Indeed, a transducer can only write true in its
output tape, so if nothing is written, we assume a false output.

▶ Theorem 24. A Boolean query Q is positively (resp. negatively) coordination-free if and
only if Q is monotone (resp. antitone).

Proof. From Theorem 22, Q is positively coordination-free if and only if every state I with
Q(I) = T is a free termination state. Say I ⊆ I ′ and suppose Q(I) is true. Then, I is a
free termination state and thus I ′ is as well, which implies Q(I ′) = Q(I) = T. Hence, Q is
monotone. The antitone case is symmetric. ◀

For instance, consider the Boolean query ∀x : R(x) > 0. This query freely terminates on
all false instances, and hence it can be considered negatively coordination-free. Observe that
Ameloot et al. [5] categorizes antitone Boolean queries as not being computable by oblivious
transducer networks. This is because of the definition of the output of a transducer network
being the union of outputs and the encoding of the boolean values True and False being the
presence of an empty tuple and the absence of a tuple respectively. In addition to antitone
queries, some queries are neither monotone nor antitone, but still have coordination-free
correct inputs such as our example from Section 4.1, Q() = R(c) ∧ ¬S(c).

Non-Boolean Queries. Consider now a non-Boolean query Q that outputs a set. In this
case, we will introduce a ready variable ready(v, t) for every node v and every potential
tuple t. Note that this introduces another layer of granularity since we can now compute
some tuples in a coordination-free correct manner, while others we cannot. We can similarly
lift coordination-free correctness to the entire query Q by saying that Q is positively (resp.
negatively) coordination-free if every Boolean query (t ∈ Q(I)) is positively (resp. negatively)
coordination-free. Positive coordination-freeness captures exactly how oblivious relational
transducers work: they can write only correct facts to the output tape, which they can never
retract. The following result is immediate.

▶ Theorem 25. A non-Boolean query Q is positively (resp. negatively) coordination-free if
and only if Q is monotone (resp. antitone).

We complete this section by an example that shows the benefits of a fine-grained
coordination-free definition. Consider the following query Q, which is neither monotone nor
antitone: Q(x) = (R(x) ∧ x > 10) ∨ (S(x) ∧ ¬T (x)). In this case, any instance that contains



C. Power, P. Koutris, and J. M. Hellerstein 32:15

a tuple R(20) freely terminates (with true) for the output tuple (20). Also, any instance
that contains (T (5)) freely terminates (with false) for the output tuple (5). Thus, we can
correctly output the existence/non-existence of the two tuples in a coordination-free manner.

5.2 Distributed Computation with Metadata
Many distributed systems depend on some form of metadata to infer facts about what state
transitions may be possible in the future. The essential such example from [5] is the all()
relation which returns the IDs of all transducers in a network. all() is used to compute
non-monotone queries and can also be modeled with free termination.

To encode the all() relation, we extend the schema R to include a nullary relation All()
that will be set to true if we know that all machines have sent all their local data. Formally,
we will extend S∪ such that the update transitions of any state with All = F will be as before,
but all outgoing transitions of a state with All = T will be self-loops. This makes every state
with All = T be a free termination state. Since in every fair and complete run a node will
receive all input data, we are always guaranteed that we will reach a free termination state
and hence can do the ready transition correctly. Of course, the tradeoff is that updating All

requires coordination between the nodes.
In Appendix C we show how partitioning policy metadata in transducer networks [29, 4]

can be modeled with free termination as well.

6 Free Termination with Finite States

For practical applications, we are interested in computing free termination states both
statically at compile time and dynamically at runtime. Thus far, we have identified algebraic
properties of programs that allow us to detect free termination states. In this section, we
study free termination when the semiautomaton has a finite state space.

6.1 Detecting Free Termination
At runtime, it is desirable to determine whether the current state is a free termination state.
This can be done by computing the reachable states from the current state in the transition
graph G[S] and verifying that they all return the same query result. Hence, this computation
is linear to the size of the transition graph. However, it turns out that we can compute all
free terminating states in linear time as well.

▶ Proposition 26. Let S = (D, L, U) be a semiautomaton with a finite state space, and Q

be a query. We can determine all free terminating states in time linear to the size of the
transition graph (assuming computing Q takes constant time).

Proof. To achieve this result, we first need the following observation on the behavior of free
terminating states: if s is a free terminating state, then all states in the Strongly Connected
Component (SCC) of s in G[S] are also free terminating. Thus if two states s, s′ are in the
same SCC and Q(s) ̸= Q(s′), then none of the states in the SCC are free terminating.

The first step of the algorithm is to convert G[S] to a Directed Acyclic Graph (DAG) G′,
where each node represents an SCC. This is standard and can be done in linear time. As a
second step, we iterate over all SCCs and label them as a candidate if Q is the same across
all states in that SCC; otherwise, we remove from G′ the SCC and all other nodes that can
reach it. This step can also be implemented in linear time.
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We are now left with a DAG G′′ where each SCC has the same value for Q. In our
final step, we perform a traversal of the SCCs in reverse topological order. Any SCC with
no outgoing edge in G′′ is free terminating (meaning all the states in the SCC are free
terminating). At any step, if an SCC C has outgoing edges only to free terminating SCCs
and Q is the same for C and its outgoing SCCs, we mark C as free terminating; otherwise,
it is not free terminating. This final step also requires linear time. ◀

Recall that a finite semiautomaton S is a DFA without a start or accept states. If we
denote a state of S to be the start state, and take Q to be a Boolean query that returns
true for accept states and false for the other states, we have exactly a DFA. In this case,
free termination of a state means essentially that we can stop the computation of the DFA
without the need to read any more symbols from the input. From Proposition 26, we obtain
as a corollary:

▶ Corollary 27. The free termination states of a deterministic finite automata (DFA) can be
computed in linear time in the size of the DFA.

DFAs are an interesting example of converting an infinite state space (all strings over the
alphabet) to a finite state space. We now explore connections between free termination and
this notion of equivalent state representations.

6.2 State Minimization
In this section, we ask whether given a semiautomaton S and a query Q we can construct
another “simpler” semiautomaton S′ that has the same behavior as S for the given query.
Formally:

▶ Definition 28 (Equivalence). Let S,S′ be two semiautomata that both contain a start
state ⊥ that reaches all states and have the same label set L. Let Q, Q′ be two queries on
S,S′ respectively. We say that (S, Q) is equivalent to (S′, Q′) if given the same sequence of
transitions starting from ⊥, the query result will be identical.

If (S, Q) corresponds to a DFA, the above definition captures exactly DFA equivalence.
In this case, one can simply perform state minimization in DFAs [28] to obtain a minimal
DFA. The following property holds for free termination states in DFAs.

▶ Proposition 29. A free termination state cannot be part of a cycle in a minimal DFA.

Proof. Assume for the sake of contradiction that we have a minimal DFA and a free
termination state s that participates in a cycle in that DFA. Each state in the cycle is
reachable from s, so they must all return the same query result as s (accept/reject) and
also be free-termination states. The DFA in which each state in the cycle is collapsed into a
single state is equivalent and has strictly fewer states, thus the original DFA cannot have
been minimal. ◀

For a general pair (S, Q), we can follow the same idea as state minimization in DFAs.
We define the collapsing of a set of states S ⊆ D that take the same value for Q as the
modification of the semiautomaton that (i) replaces D with (D \S)∪{s0}, where s0 is a new
state, and (ii) any update that transitions to a state in S goes to s0, and any update that
transitions from a state in S starts in s0. We also set Q(s0) to be the value of a state in S.

▶ Proposition 30. Let S = (D, L, U) be a semiautomaton and Q be a query. Let s ∈ D be a
free terminating state. Then, the pair (S′, Q′) resulting from collapsing U∞(s) is equivalent
to (S, Q).
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Proof. Because s is a free termination state, we know every state in U∞(s) returns the same
query result as Q(s). We can collapse all states in U∞(s) with all transitions being self-loops.
The collapsed state s0 is a free termination state and cannot be part of a cycle. Any sequence
of updates that ends up in U∞(s) in S will end up in s0 in S, and hence we have the desired
equivalence. ◀

Given (S, Q) with finite state space, consider now the equivalent pair (S□, Q□) obtained
by repeatedly applying the above proposition to free termination states until there is no
more change; we call (S□, Q□) collapsed. This is analogous to a minimal state representation.
Note that we need finiteness to guarantee that the process of collapsing states will terminate
at some point. We can now show the following characterization of free termination in this
case.

▶ Proposition 31. Let S be a semiautomaton with an initial state ⊥ and finite state space, and
Q be a query. Then, for the equivalent collapsed pair (S□, Q□), a state is a free termination
state if and only if all outgoing transitions are self-loops (i.e. the state is a fixpoint).

Proof. From Proposition 30, we know that a free termination state that has any reachable
states other than itself can be collapsed into a single state in which there are no outgoing
edges except self-loops. The other direction is also clear as a state s that has no outgoing
transitions satisfies the definition of a free termination state as U∞(s) = {s}. ◀

State minimization offers an interesting perspective on distributed systems techniques like
CRDTs. While CRDTs appear to only describe inflationary state mutations, it is common to
convert non-inflationary updates into inflationary ones using metadata. We see this in both
the two-phase set CRDT and the positive-negative counter CRDT (appendix B). While the
state transition graphs for these CRDTs are acyclic, they have equivalent representations
that are cyclic. By looking at these structures from the perspective of user-visible state
(query-layer equivalence), the separation between free termination of query results and
eventual consistency of state becomes clear.

7 Conclusion

We have presented a general state transition framework for reasoning about coordination-
free computation in distributed systems. Our central notion, free termination, allows the
relational transducer approach for declarative networking and the algebraic lattices approach
of conflict-free replicated data types to be modeled in a single framework.
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A Commutativity

Another algebraic property that many distributed systems satisfy is that of commutativity.
It will be convenient to switch from polish prefix notation to infix notation for our update
transitions. We use · for the application of an update transition so U(s, a) becomes s · a and
U(U(s, a), b) becomes s · a · b. Given an ordered sequence of labels a = a1, a2, ..., ak we will
also use the shorthand s · a to mean S · a1 · a2 · ... · ak.

▶ Definition 32 (Commutativity). Let S = (D, L, U) be a semiautomaton, and Q : D → R be
a query. We say that U is commutative (resp. Q is commutative) if for any state s ∈ D and
any sequences of labels a, b from L, we have s ·a ·b = s ·b ·a (resp. Q(s ·a ·b) = Q(s ·b ·a)).

Commutative update implies commutative query, but the converse does not hold. A
query may be indifferent to the order of updates but the state itself may be order-sensitive.
For instance, the query counting the number of “a”s in a string with string concatenation as
the update operation.

Insertion of tuples into a database instance is a commutative update. An update that
allows insertion or deletion of tuples over a set-semantics database is not commutative;
however insertion or deletion of tuples over a Z-set semantics database is commutative (and
forms an abelian group) [9].

▶ Proposition 33. Let S = (D, L, U) be a semiautomaton with a bottom state ⊥, and Q be a
commutative query. Then, all free termination states return the same value for Q.

Proof. Take any two free termination states s1, s2 ∈ D. Let a1 be a sequence of updates
such that ⊥ · a1 = s1 and let a2 be a sequence of updates such that ⊥ · a2 = s2. Because Q is
commutative, we have Q(⊥ · a2 · a1) = Q(⊥ · a1 · a2) = r. Since s1 is a free termination state
and s1 → ⊥ · a1 · a2, we have Q(s1) = Q(⊥ · a1 · a2) = r. Similarly, s2 is a free termination
state and s2 → ⊥ · a2 · a1, so Q(s2) = r. Thus, Q(s1) = Q(s2). ◀
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▶ Proposition 34. Let S = (D, L, U) be a semiautomaton with a bottom state ⊥, and U be
commutative. If a query is freely terminating, then any state can reach a free termination
state.

Proof. Let s be the current state. Since Q is freely terminating, there exists a free termination
state st. Let at be an update sequence such that ⊥ · at = st, and a an update sequence such
that ⊥ · a = s. From the commutativity of U , we have that ⊥ · at · a = ⊥ · a · at = s′. Since
st → s′, s′ must be a free termination state. But then we also have that s→ s′. ◀

B Examples of CRDTs

A state-based CRDT must define three functions over its state, an update operation that
allows state to be mutated from outside the system, a merge operation that determines
how the states of two replicas can combine to converge to the same state, and a query
operation that defines what is visible to the user from the internal state [26]. The basic idea
is that updates from users can modify the state of any replica in the distributed system and
asynchronous gossip of replica states in the background will ensure each replica eventually
converges to the same state. In order to guarantee this convergence (formally known as strong
eventual consistency), the merge operation must be associative, commutative, and idempotent
and the update operation must be inflationary with respect to the partial ordering induced
by the merge operation.

Below, we present some common examples of state-based CRDTs and discuss their
algebraic properties and how they affect free termination.

Grow-Only Set CRDT. This CRDT is defined as follows:
state: Set S over the universe U
update: Set S over U and m ∈ U. Then, update(S, m) = S ∪ {m}
merge: merge(A, B) = A ∪B

query: Q(S) = S (identity query)

An append-only database is an example of a grow-only set. All results about free
termination, threshold queries, and free termination of monotone and antitone queries apply
to grow-only set CRDTs.

Two-Phase Set CRDT. We define it as follows:
state: Two sets over the universe U, INSERTS and DELETES.
update: The operation “delete(m)” gives DELETES = DELETES ∪ {m}. The operation

“insert(m)” gives INSERTS = INSERTS ∪ {m}.
merge: To merge two states, we set-union the INSERTS and DELETES sets respectively
query: INSERTS− DELETES (set difference)

This models something close to a database instance with insertions and deletions, but
the semantics of deletion are slightly altered. The set of deletions is grow-only, so when an
element is deleted once it is forever in the deletion set. This means that m ∈ DELETES→
m /∈ INSERTS− DELETES. In other words, we can negatively partially freely terminate on
any value in DELETES. On the other hand, we can never positively partially free terminate
as any element in the {INSERTS} set could always be added to the DELETES set by some
future update. In the paper Keep CALM and CRDT On [22] this example was pointed out
as a CRDT that has eventually consistent state, but a non-monotone user-observable query
over that state. The paper stated the intuition that this CRDT offers weaker guarantees
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than a threshold-query over a CRDT would offer. We now see that intuition of weaker
guarantees formalized by our definition of free termination. The grow-only set CRDT offers
freely terminating threshold and dual-threshold queries. While the state of the two-phase set
grows monotonically over time, its non-monotone query can only offer negative partial free
termination.

Observe that the state transition graph of the Two-Phase Set CRDT is inflationary with
respect to the set subset partial ordering, but if we look at an equivalent state transition
graph with respect to the query, the graph contains cycles. The graph however is not fully
invertible, which is what allows for negative partial free termination.

Grow-only Counter CRDT. This is defined as follows:
state: A map k from unique replica IDs to natural numbers.
update: An update at replica with ID j increments the value of k[j].
merge: Element-wise max of the map elements using the natural ordering of the natural

numbers.
query: Sum over the values in the map.

The grow-only counter allows for eventually consistent counters for things like tallying
votes or counting likes in a distributed setting. It is not sufficient to have the states be
just a natural number that gets incremented because there is not an idempotent way to
merge these states together, which may result in double-counting increments. To resolve this,
each replica is assigned a unique ID and the only that replica will be able to apply updates
that increment that unique ID’s value. Effectively, the state of every node in the system is
tracked in a map at each node and the merge operation overwrites this map with the more
up-to-date values for any elements of the map your replica has out-of-date information on.
max : N× N → N is an associative, commutative, and idempotent operation so it forms a
valid merge operation for a state-based CRDT. The update operation is monotone w.r.t. the
ordering of max, which means that it can act as a proxy for determining which states are
newer and which are outdated.

C Transducer Models with Metadata

We will show in this section how we can view a policy-aware transducer [4] via the lens of
free termination. In the policy-aware setting, we are equipped with a distribution policy P

that maps each fact t to a subset of the network nodes (which are the nodes that hold t).
Each node can apply locally P to any (possible) fact that uses constants from the current
local active domain of the node.

To do this, we will define a new semiautomaton S±
∪ . Each state of the semiautomaton

consists of a tuple of instances (I+, I−) with the property that I+ ∩ I− = ∅, i.e., the two
instances have no tuples in common. Intuitively, I+ tracks the presence of tuples, and I−

tracks the absence of tuples. A transition in S±
∪ simply adds a tuple in either I+ or I−. The

query result is computed by running the query on the positive instance, q(I+).
The distributed computational model is similar to the one presented in Section 5 with

the following modifications. First, in a configuration γ the buffer buf is a tuple (buf+, buf−)
which tracks tuples that are to be “added” and tuples that are to be “removed”. Second, the
transitions are modified as follows:
Produce Transition: A node can move any tuple in its local state to the buffer buf+ of its

neighboring node; it can also check whether for a potential tuple t (from the current local
active domain) P (t) contains that node and if not it can add t to the buffer buf− of its
neighboring node.

ICDT 2025



32:22 The Free Termination Property of Queries over Time

Consume Transition: A node can update its state by removing a tuple from buf+ and
adding it to I+, or removing a tuple from buf− and adding it to I−.

Ready Transition: A node can set ready(v)← T.

A run is fair if every fact in every buffer is eventually taken out, and it is complete if
every tuple in a state is eventually sent to its neighbors (and also every negative fact in a
local policy is also sent to its neighbors). Correctness is defined in the same way as before.

For an instance I, we define Ī to be the set of tuples with values in adom(I) that are not
in I.

▶ Theorem 35. (Q, I) is coordination-free correct if and only if (I, Ī) is a free termination
state for Q in the semiautomaton S±

∪ .

Proof. Consider the following algorithm: it will set ready(v) to true exactly when (I+, I−)
is a free termination state for Q in S±

∪ . This algorithm is correct, since at the instance
(J+, J−) where ready becomes true, all reachable states maintain the result of Q. Note that
from the network flooding construction, J+ ⊆ I and J− ⊆ Ī. Hence, (I, Ī) is reachable from
(J+, J−) and Q(J+) = Q(I). Further, every fair and complete run reaches the quiescence
point, when state(v) = (I, Ī), and thus the algorithm will set ready to true.

In the other direction, suppose (Q, I) is coordination-free correct and consider an algorithm
that computes the output correctly. At the quiescence point, when state(v) = (I, Ī), this
algorithm must set ready to true (since the state will remain unchanged from that point
on). But now consider a fair and complete run for another input I ′ ⊇ I such that I ′ does
not contain any tuples from Ī, and assume that some node v receives first all of I, Ī. Note
that (I ′, Ī ′) is a reachable state in S±

∪ . At this point, the algorithm would need to do the
ready transition. But because of correctness, it must be that Q(I) = Q(I ′). Hence, I is a
free termination state. ◀

We say that a query Q is domain-distinct-monotone if Q(I) ⊆ Q(I ∪ J) for all instances
I, J for which J is domain distinct from I (meaning every fact in J has some constant that
does not appear in I). We can now show the following analogous theorem, which captures
the characterization of policy-aware transducers in [4].

▶ Theorem 36. A Boolean query Q is positively (resp. negatively) coordination-free in the
policy-aware setting if and only if Q is domain-distinct-monotone (resp. domain-distinct-
monotone).

Proof. From Theorem 35, Q is positively coordination-free if and only if every state (I, Ī)
with Q(I) = T is a free termination state. Take J domain distinct from I and suppose
Q(I) is true. Then, I is a free termination state. Since (I ∪ J, ¯I ∪ J) is reachable from
(I, Ī), Q(I ∪ J) = Q(I) = T. Hence, Q is domain-distinct-monotone. The antitone case is
symmetric. ◀
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