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Streaming systems are present throughout modern applications, processing continuous data in real-time.

Existing streaming languages have a variety of semantic models and guarantees that are often incompatible. Yet

all these languages are considered “streaming”—what do they have in common? In this paper, we identify two

general yet precise semantic properties: streaming progress and eager execution. Together, they ensure that

streaming outputs are deterministic and kept fresh with respect to streaming inputs. We formally define these

properties in the context of Flo, a parameterized streaming language that abstracts over dataflow operators

and the underlying structure of streams. It leverages a lightweight type system to distinguish bounded streams,

which allow operators to block on termination, from unbounded ones. Furthermore, Flo provides constructs

for dataflow composition and nested graphs with cycles. To demonstrate the generality of our properties, we

show how key ideas from representative streaming and incremental computation systems—Flink, LVars, and

DBSP—have semantics that can be modeled in Flo and guarantees that map to our properties.
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1 Introduction
Stream processing is an increasingly important component of modern applications, from real-time

analytics to collaborative tools. These applications must respond with low latency to events as they

arise and often process long streams of data. Furthermore, these applications often involve stateful

processing, where the output of a computation depends on the history of the inputs.

Many streaming applications are expressed as dataflow programs [4], specified as a directed

graph of operators. Each node is an operator that consumes and produces data elements, and the

edges represent the flow of data between them. This model is used in systems like Apache Flink [15],

Spark [45], StreamIt [42], and many functional-reactive programming languages [38]. Dataflow

programs benefit from being written in a declarative manner that abstracts away from low-level

details such as how operators are scheduled and where state in the system is accumulated [1, 7, 20,

21]. This makes it easy for compilers to optimize dataflow programs, since they can rearrange and

transform operators within the graph without affecting the observable behavior of the program.

Existing streaming languages present a variety of semantics and aim to provide various guar-

antees. But several streaming languages do not even agree on what constitutes a stream! They

can be ordered sequences [15, 42], or sets [6], or even lattices [30] or Z-Sets [13]. These languages

also vary in their semantics for state persistence, and offer a range of approaches for concepts like

windowed aggregations and batched execution. But they also have much in common: streaming

languages tolerate changing inputs and aim to produce outputs as early as possible. Yet these ideas

have remained fuzzy and tied to incompatible semantics.

In this paper, we distill these common traits into two key properties: streaming progress and
eager execution. We formally define these properties in the context of Flo, a parameterized
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streaming language that accommodates a range of streaming semantics while providing sufficient

structure to precisely define our proof objectives. Flo abstracts away from notions of underlying

collection types, such as ordered sequences, and supports semantics that many streaming languages

cannot reason about [19], such as retractions.

A key challenge in streaming systems is ensuring that the program makes progress. Unlike
traditional languages, the definition of progress in streaming languages has long remained fuzzy

and tied to very specific semantics. In Flo, we introduce a general yet precise formal definition

called streaming progress, which uses stream termination (inspired by work from the databases

community [43]) as a common semantic feature to make guarantees about streaming outputs.

Streaming progress guarantees that a Flo program produces as much output as possible given its

input, and that the program will not block on a stream that may never terminate.

To enforce streaming progress, we introduce a lightweight type system that differentiates between

bounded and unbounded streams. Bounded streams are guaranteed to eventually terminate, while

unbounded streams may never terminate. Operators can only block on bounded streams, and must

always make progress with respect to unbounded streams. These lightweight types can be layered

on arbitrary underlying collection types, such as Stream Types [19], sets, or even lattices.

Where streaming progress focuses on ensuring that outputs are produced in a timely fashion

relative to inputs, eager execution ensures that the outputs are deterministic. Many streaming

systems make strong assumptions about how operators are executed. For example, Dedalus [6]

processes batches of data with a single global loop, while Naiad [34] processes messages one-by-

one. In Flo, we generalize the requirement of deterministic processing into eager execution. This
property enforces that Flo can eagerly execute downstream operators while their inputs are still
being updated. Because we define this property in a way that allows for arbitrary execution

schedules while arriving at a deterministic result, this gives a low-level scheduler significant power

for deciding when operators should be run.

Flo is a declarative dataflow language that takes inspiration from the iterative processing of

actors [23], but uses an event loop that maintains several independent input and output queues.

Rather than process messages one by one, programs in Flo describe a dataflow that operates over

concrete collections of data. In fact, these collections are finite, unlike models of streams such as

co-inductive lists. To implement streaming applications, these concrete inputs can be extended,

and the execution of the Flo program can be safely resumed over these new inputs.

Flo also supports streams of streams, which capture behavior such as batching. Inspired by

ingress/egress nodes in Naiad [34], nested streams can be processed by nested dataflow graphs,
which iteratively process chunks of data sourced from a larger stream with support for carrying

state across iterations. This makes it possible to precisely implement a wide range of applications,

such as windowed aggregations, processing data with minibatches, or iterative algorithms.

Flo is a parameterized family of languages which bring their own underlying data types and

operators. Our proofs of streaming progress and eager execution are compositional, reducing the

proof burden to individual operators. This allows Flo to capture the essence of a wide range of

streaming systems under a single model, even allowing for composition that spans these approaches.

To demonstrate this generality, we show how Flo can be used to model key ideas from a representa-

tive variety of streaming languages and incremental computation systems—Flink [15], LVars [30],

and DBSP [13]—and show how existing semantic goals from each map to streaming progress and

eager execution.

In summary, we make the following contributions:

• We formally define streaming progress and eager execution in the context of Flo, and

specify a type system that reasons about stream termination (Section 3).



Flo: a Semantic Foundation for Progressive Stream Processing 3

• We introduce constructs in Flo for composing operators into dataflow graphs and prove

that they preserve our key properties (Section 4).

• We describe the semantics of nested streams and graphs in Flo and demonstrate how

they integrate with streaming progress and eager execution (Section 5).

• We show how the essence and key capabilities of existing streaming languages map to

Flo and its foundational properties (Section 6).

2 Motivating Example
To understand why we need a model for streaming systems with strong semantic guarantees, let

us walk through the challenges a developer may face while writing a simple program that sums up

a stream of numbers.

We will accept a sequence of numbers from a streaming source, sum them up, and emit the

resulting sum as the single fixed value in the output stream of our program. Streaming sources and

sinks are modeled as inputs and outputs to a dataflow graph, so we will not have explicit operators

for those. Instead, we can focus on just the core computation of summing up the numbers. A naive

attempt may use a fold operator, which accumulates a value over a stream of data. In Rust:

output = input.fold(0, |acc, x| acc + x)

This program is simple, but it has a critical flaw: the fold operator is defined over a fixed input

collection. Operationally this means it will continue processing without producing any output until

the stream somehow explicitly terminates. This concern is not addressed in the specification. In a

streaming system, this is a common mistake that can lead to programs that hang indefinitely while

consuming resources.

We next envision a number of ways a programmer could recognize and address this issue by

choosing alternative semantics for this program. We categorize them into strategies that motivate

the key properties we aim to establish with Flo: streaming progress and eager execution.

2.1 Checking Boundedness Constraints
Our program above does work on a subset of input streams: those that are finitely bounded, i.e.
where the “last” element of the input stream is guaranteed to arrive. Unfortunately, this program is

not well-defined on unbounded streams since we may accumulate the aggregation forever. In our

semantics, we will model this failure case as an operator that does not satisfy streaming progress.
To resolve this, we can imagine classifying input streams via a subtype that would capture

the boundedness property. We could then declare that the semantics of the fold operator are

defined (correct) on bounded input streams, but undefined (incorrect) on unbounded input streams.

Boundedness annotations on streams and operators would allow us to statically analyze the program

above as incorrect, and suggest a fix: find a way to ensure that input is bounded.
But what if the programmer’s intent was to handle an unbounded input stream? Two natural

variations to this specification are possible, as we discuss next.

2.2 Coercing to Bounded Streams
Many streaming applications and languages address the mismatch between unbounded streams and

operators that require boundedness by introducing constructs for computing over finite batches or

“windows” of the input stream [15]. Perhaps this is what our programmer intended: their use of

fold was intended to be scoped to a finite substream of input.
To capture this idea, we can envision a program variant that uses a batch operator to emit a

stream of streams, where each inner stream is a batch of the original input. There are many

possible “windowing” semantics for such a batch operator, but let us assume that any such batch
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operator ensures that each inner stream is bounded by specification. In that case, it is correct to

employ fold over the inner streams, even though the outer stream may be unbounded. We can

specify how each inner stream is handled via a nest operator that allows us to define a nested

dataflow graph to run for each of these inner streams:

output = input.batch().nest(|inner| {
inner.fold(0, |acc, x| acc + x)

})

The output of this program will be another stream of streams, where each inner stream is the

(single) sum of a batch of the input stream. This avoids the semantic problem of our previous example:

even if input is unbounded, each inner argument to nest is bounded, and hence can be passed

into fold. Moreover, if input is bounded, this program can (with appropriate parameterization)

produce the same result as our original program above, by treating the whole input as a single batch.

Hence in some sense we have not drifted too far from what seems to have been the programmer’s

original intent.

2.3 Embracing Streaming Operators
An alternative “fix” to the initial program would be to replace the fold operator with a streaming

variant like scan that emits the “running” sum:

output = input.scan(0, |acc, x| acc + x)

On the positive side, this program works on both unbounded and bounded input streams (and it

will satisfy our formal definition for streaming progress). However, it seems rather distant from our

original program: in particular, there is no way to make it produce the same result as our original

program if input is bounded.

Instead, we could imagine a streaming operator whose output is a singleton stream of one

monotonically growing value. At each step, this aggregator computes an updated sum, but ignores

the result if it is smaller than the previous aggregated result. We could then write a program

consuming an unbounded input stream:

output = input.sum_lattice()

Once again, for a bounded input, this program will produce the same result as our original program.

It is, however, a departure from traditional streaming systems: for an unbounded input, the output

of the sum_lattice operator “grows” in the domain of natural numbers rather than in a domain of

collections.

To get back to the domain of collections, such a “monotonic singleton” stream can be passed

into a monotone function that emits an event upon reaching a threshold:

output = input.sum_lattice().event_when_above(100)

This is a common pattern in monitoring systems, and is a simplified version of the approach

taken by LVars [30]. Why does the threshold need to be monotone? This boils down to our second

formal property: eager execution. This requires that the overall program yields deterministic

results even if we eagerly execute operators on partial inputs. If this threshold were not monotone,

there could be non-determinism due to when the threshold is evaluated. But eager execution is a

more general property than monotonicity; we will show that it is equally meaningful in contexts

where there is no natural ordering of values, such as in incremental computations with retractions.

2.4 Discussion
We started with a program that is ill-specified over unbounded streams. We saw various ways

to “fix” this problem, inspired by salient design points of different streaming languages. What is
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key is that although these techniques were motivated by ideas from different languages, they all

serve to satisfy two general properties of programs written in Flo: streaming progress and eager
execution. In the following sections, we will walk through the formal semantics of Flo and show

how we can precisely define these properties while retaining the flexibility to implement a wide

range of streaming semantics found in the literature and used in practice.

3 Collections, Streams, Operators, and Core Properties
The Flo model is based on specifications of dataflow pipelines, where collections of data elements

are transformed by operators such as map, filter, or join. This is inspired by existing systems

such as Flink [15], but with a critical difference that Flo is parameterized over collection types and

operators. This enables us to reason about a wide range of streaming paradigms and capture the

essence of languages like LVars [30], Bloom [5], and Temporel [39] under a single model.

In this section, we define a family of collection languages 𝐿𝐶 , operator languages 𝐿𝑂 , and specify

the formal properties that these languages must satisfy. In Section 4, we will define a new family of

languages 𝐿𝐺 which include mechanisms to compose operators into a dataflow graph. Finally, in

Section 5, we will extend 𝐿𝐺 with built-in operators for executing nested graphs. Our goal is to

prove eager execution and streaming progress for all these languages.

3.1 The Flo Event Loop
Before we can dive into the semantics of these languages, we need to first discuss how Flo programs

are executed. Flo deviates from classic streaming models in that it uses an actor-inspired event loop

where messages are received, processed, and outputs are emitted. This means that the Flo program

itself is always executing over concrete, finite collections of data rather than abstract streams. We

describe a lightweight pseudocode for the event loop of a Flo program in Figure 1.

𝑂 ← tuple of empty collections for each output

𝐺 ← initial Flo program

loop
Δ← tuple of new data batches for each input

𝐼 ← inputs of 𝐺

𝐺 ← 𝐺 with inputs set to 𝐼 ++ Δ
𝐺,𝑂 ← 𝐺 after running an arbitrary number of small-steps with initial output 𝑂

𝑂 ← remaining data after sending arbitrary part of 𝑂

Fig. 1. The event loop used to execute Flo programs.

Whenever a batch of new data is received, we use a concatenation operator ++ to add this to

the existing inputs. In classical streaming systems, such as those proposed in Flink [15] and Stream

Types [19], this corresponds to appending new elements to the end of the existing data. But in Flo,

our formalization makes it possible for this concatenation operator to take many forms, including

those that do not monotonically grow the collection.

The other key aspect to note is that we run an arbitrary number of small-steps of the program𝐺

in each iteration, rather than running it until there is nothing to be done. We also allow the event

loop to arbitrarily choose which data is sent at the end of each iteration; the outputs need not be

consumed according to concatenation order. Later in this section, we will introduce key properties

that ensure that this loop will always make progress and yield deterministic results.
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3.2 Collection Values, Expressions, and Types
Flo programs manipulate collections, which are concrete, finite values used to capture inputs,

outputs, and (in Section 4) intermediate states of the program. Collection values can be updated as

new data arrives or as an operator consumes data, but the way a collection value changes over time

does not need to follow a partial order, making it possible for our semantics to capture applications

such as incremental computation over relations.

We define a collection language 𝐿𝐶 = (𝐶, ++, 𝐸𝐶 ,𝑇𝐶 , ⟦⟧𝐶 , ⌊⌋𝐶 , type𝐶 , fix) as a tuple of:
• C: the set of collection values, which are mathematical objects

• ++ : 𝐶 ×𝐶 → 𝐶: a “concatenation” function on collections

• 𝐸𝐶 : the set of collection expressions, which are syntactic objects

• 𝑇𝐶 ⊆ P(𝐶): the set of collection types, which are sets of collection values

• ⟦⟧𝐶 : 𝐸𝐶 → 𝐶: a total denotational semantics that maps collection expressions to values

• ⌊⌋𝐶 : 𝐶 ⇀ 𝐸𝐶 : a partial lowering function that maps collection values to expressions

• type𝐶 : 𝐸𝐶 → 𝑇𝐶
: a total typing function that maps collection expressions to types

• fix : 𝐶 → 𝐶 , a transformation from a value into an equivalent
1
one that is fixed

We additionally define: fixed (𝑐) ≜ ∀𝑐′ ∈ 𝐶. 𝑐 ++ 𝑐′ = 𝑐 and ∅ ∈ 𝐶 is identity on the RHS of ++.
We constrain 𝐿𝐶 via the following well-formedness conditions:

∀𝑒 ∈ 𝐸𝐶 . ⟦𝑒⟧𝐶 ∈ type𝐶 (𝑒) ∧ ⌊⟦𝑒⟧𝐶⌋𝐶 = 𝑒

∀𝑐 ∈ 𝐶. fixed (fix (𝑐)) ∧ 𝑐 ++ ∅ = 𝑐

∀𝜏 ∈ 𝑇𝐶 , 𝑐 ∈ 𝜏, 𝑐′, 𝑐′′ ∈ 𝐶. 𝑐 ++ 𝑐′ = 𝑐′′ =⇒ 𝑐′′ ∈ 𝜏
The language of collections involves both mathematical and syntactic representations. Our defi-

nition of collections is centered around collection values, which are the underlying mathematical

objects being manipulated. At the syntax level, we represent these with collection expressions,
which can be lifted to values via a denotational semantics, and then lowered back down to syntax

using the ⌊⌋𝐶 function. We also define a typing function type𝐶 that maps collection expressions to

types, which are simply sets of collection values.

A key difference between the Flo model and other streaming semantics [19] is that the concate-

nation function does not need to follow a partial order over collection types, or satisfy algebraic

properties like commutativity or associativity. What does interest us is the question of when the

concatenation function reaches a fixpoint. The fixed predicate identifies a collection value such

that no more data can be added to it, which we will leverage to define streaming progress.

Collections can take on a variety of forms. A common collection in streaming systems is the

ordered sequence, which captures an ordered list of elements. But collections could also be multi-

sets—as in streaming extensions to SQL [11]—or sets, as in Dedalus [6]—where order often does not

affect semantics. A “collection” can even be a single value where “concatenating” to the collection

updates the value—as in our lattice_sum result in Section 2. We will lay out detailed examples of

concrete collection types in Section 6.

3.3 Stream Types and Boundedness
Collections describe the values that are being processed by operators, but our discussion so far has

been more reminiscent of batch processing than streaming. Our unique interest in streaming is the

evolution of collections over time. In our motivation, we identified two key aspects of a streaming

program’s behavior with respect to time: eager execution makes it possible to correctly process

1
The definition of equivalence is up to the collection (for example, concatenating a stream terminator or setting a maximum

size), and determines the guarantees provided by streaming progress (Definition 3.3)
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newly-arrived data on an input to get an updated output, and streaming progress ensures that
the program will not unexpectedly block on a collection becoming fixed.

To formally define streaming progress later in this section, we need to add a layer on top of

collection types, which we call stream types. In our model, the key property we care about is

whether a collection value will eventually become fixed (using the definition from Section 3.2),

or if it may never become that. To capture this, we use a boundedness flag inspired by work in

databases [43], which is either Bounded or Unbounded. We define a stream type as a pair of a

collection type and a flag on the left of Figure 2. We will see stream types in action in Section 3.6.

⟨stream-type⟩ ::= (⟨T ⟩, B | U) reflexive-subtype

𝑆 ≤ 𝑆

bound-subtype

(𝐶,B) ≤ (𝐶,U)

Fig. 2. The grammar for stream types, where 𝑇 ∈ 𝑇𝐶 , and the subtyping relationship for stream types.

Note that collection expressions are not typed directly to a stream type, instead stream types

are used as markers on inputs and outputs of a Flo program. We also have a simple subtyping

relationship, where a stream type that is declared as bounded can be used in an unbounded context,

because an unbounded stream has no restrictions on how the collection value behaves over time. We

list the typing rule for this relationship on the right of Figure 2, where ≤ is a subtyping relationship

we will use in the rules for composing operators.

3.4 Operators
Flo programs transform input collections into output collections. This transformation is carried out

by operators that consume data from several input collections to update output collections. In this

section, we lay out the family of operator languages 𝐿𝑂 , which captures Flo programs with a single

operator. Because programs written in this language fit the general structure of the Flo event loop,

we will use this language to lay out all the key properties we aim to prove about Flo. In Section 4,

we will extend this language to 𝐿𝐺 to capture the composition of operators into a dataflow graph.

We will use the notation [𝐶] to represent tuples whose elements are each in C (and similarly

for [𝐸𝐶 ]), which denotes having multiple inputs or outputs. We will also denote 𝑇 𝑆
to be the set

of all stream types and [𝑇 𝑆 ] to be a tuple of many stream types. Tuples of stream types follow an

element-wise subtyping relationship.

We define an operator language 𝐿𝑂 = (𝐿𝐶 , 𝐸𝑂 ,→𝛿 ,𝑂𝑅𝐷𝑂 , ⊢𝑂 ) as a tuple of:
• 𝐿𝐶 = (𝐶, ++, 𝐸𝐶 ,𝑇𝐶 , ⟦⟧𝐶 , ⌊⌋𝐶 , type𝐶 , fix): a well-formed collection language

• 𝐸𝑂 : a language of operator expressions, which are syntactic objects

• (𝐼 , 𝑒𝑜 ) →𝛿 (𝐼 , 𝑒𝑜 ,𝑂), a small-step operational semantics where 𝐼 ,𝑂 ∈ [𝐶] and 𝑒𝑜 ∈ 𝐸𝑂
• (𝐼 , 𝑒𝑜 ) ≺𝑂 (𝐼 , 𝑒𝑜 ) ∈ 𝑂𝑅𝐷𝑂

, a set of partial orders on collections where 𝐼 ∈ [𝐶] and 𝑒𝑜 ∈ 𝐸𝑂
(for some operators, we will omit the operator expression in the partial order)

• ⊢𝑂 : 𝑒𝑂 : (𝜏𝑆 ↩→ 𝜏𝑆 , ≺𝑂 ) a typing relation between elements 𝑒𝑂 ∈ 𝐸𝑂 , stream types

𝜏𝑆 ∈ [𝑇 𝑆 ], and partial orders ≺𝑂∈ 𝑂𝑅𝐷𝑂

We augment this with the following definitions: Given 𝐿𝑂 = (𝐿𝐶 , 𝐸𝑂 ,→𝑂 ,𝑂𝑅𝐷𝑂 , ⊢𝑂 ), we define:
• The set of operator types: 𝑇𝑂 = {𝜏𝑖 ↩→ 𝜏𝑜 , ≺ |𝜏𝑖 , 𝜏𝑜 ∈ [𝑇 𝑆 ] ∧ ≺∈ 𝑂𝑅𝐷𝑂 }
• The small-step relation→𝑂= {((𝐼 , 𝑒,𝑂), (𝐼 ′, 𝑒′,𝑂 ++𝑂 ′)) | (𝐼 , 𝑒) →𝛿 (𝐼 ′, 𝑒′,𝑂 ′)}
• The typing relation on small-step configurations:

⊢𝑂 𝑒 : ((𝜏𝑖 , 𝐵𝑖 ) . . . ↩→ (𝜏𝑜 . . . , 𝐵𝑜 ), ≺𝑂 ) 𝐼 ∈ (𝜏𝑖 × . . .) 𝑂 ∈ (𝜏𝑜 × . . .)
⊢→: (𝐼 , 𝑒,𝑂) : (𝜏𝑖 . . . ↩→ 𝜏𝑜 . . . , ≺𝑂 )
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We further constrain 𝐿𝑂 via the following well-formedness condition:

∀ ≺ ∈ 𝑂𝑅𝐷𝑂 . ≺ is finite and downwards-closed

We also require, ∀𝑒, 𝑒′ ∈ 𝐸𝑂 , 𝜏 ∈ 𝑇𝑂 , 𝐼 , 𝐼 ′,𝑂,𝑂 ′ ∈ [𝐶] . ⊢→ (𝐼 , 𝑒,𝑂) : 𝜏 ∧ (𝐼 , 𝑒,𝑂) →𝑂 (𝐼 ′, 𝑒′,𝑂 ′)
(For all well-typed expressions which step):

• →𝑂
must be confluent

• ⊢→ (𝐼 ′, 𝑒′,𝑂 ′) : 𝜏 (type preservation)

• 𝜏 = (. . . , ≺) =⇒ (𝑒′, 𝐼 ′) ≺ (𝑒, 𝐼 ) (steps reduce the operator or its inputs)
Let us break down the intuition behind these properties. Every operator has a type with several

input stream types and output stream types. The semantics of each operator are defined by the

small-step relation→𝛿
, where the input and operator expression (which may carry state) are used

to produce an updated input, operator expression, and an output collection. The small-step relation

→𝑂
transforms this relation into a classic operational semantics form, where the output generated

by→𝛿
is concatenated to the existing output (this concatenated form will be key to Definition 3.1).

A key property of operators is the confluence of→𝑂
. In Flo, we do not require there to be a

unique small step that can be taken for a given input and operator expression. For example, when

processing a set of values, an operator may choose to process them in any order. But confluence

guarantees that there exists some later state (𝐼 ′, 𝑒′,𝑂 ′) which all traces of small steps starting from

(𝐼 , 𝑒,𝑂) will eventually reach. For operators that do have this non-determinism, proofs of this

property typically involve a commutativity argument over the order of processing inputs.

Each operator also has a partial order over the operator expression and its inputs ≺, which is

provided by the typing relation ⊢𝑂 and must be preserved across small-steps. We can use this to

prove our first property on operators in 𝐿𝑂 , that they always reach a stuck state in finite steps:

Lemma 3.1 (Operator Stuck State). Given an operator 𝑜𝑝 , for all input states 𝐼 and output states
𝑂 , there is a finite number of small steps that can be taken before no more small steps can be applied.

Proof. We leverage the partial order for this operator ≺. Since there are a finite number of

operator expressions and collection values smaller than the initial state, and each step reduces the

expression or its input, and the order is preserved across steps, there must be a finite number of

total steps that can be taken before either no step applies or there is no smaller operator or input in

the partial order. □

Note that our definition for stuck state does not require the expression to be reduced to some

terminating form, such as the inputs all being empty. We only require that no more steps can be

taken, which allows us to further loosen the requirements for collections; there is no need to define

a unique bottom value, for example. Combined with the confluence of small-steps, this implies that

every operator will eventually reach a unique stuck state.

3.5 Eager Execution
Flo hinges on two key properties that enable safe and progressive execution over streaming inputs:

eager execution and streaming progress. The first guarantees that if new data arrives after
partial inputs have already been processed, then we can safely resume the execution of the Flo

program while arriving at a deterministic result. The second guarantees the program will never

block on the fixedness of an input that may never become fixed. In Section 4, we will prove that

both of these properties are true of well-typed graphs and Flo as a whole.

Eager execution avoids the situation where all input to an operator must be computed before

the operator can begin execution. Instead, we require all operators to prove that they can begin

processing partial inputs and receive additional data later via concatenation, while still producing
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the same result as if all the data was present from the start. This enables flexibility for scheduling

and ensures that the outputs of a Flo program are deterministic even if an arbitrary number of

small steps are run during each iteration of the event loop.

Definition 3.1 (Eager Execution). Consider an operator 𝑜𝑝 ∈ 𝐸𝑂 . For all inputs 𝐼 ∈ [𝐶], outputs
𝑂 ∈ [𝐶], concatenated collection Δ ∈ [𝐶], updated operator 𝑜𝑝′ ∈ 𝐸𝑂 , input collection, 𝐼 ′ ∈ [𝐶],
output collection 𝑂 ′ ∈ [𝐶] such that

(𝐼 , 𝑜𝑝,𝑂) →𝑂 (𝐼 ′, 𝑜𝑝′,𝑂 ′) and (𝐼 ++ Δ, 𝑜𝑝,𝑂) →𝑂 (𝐼 ′′, 𝑜𝑝′′,𝑂 ′′)
there exists a stuck state (𝐼 ′′′, 𝑜𝑝′′′,𝑂 ′′′) such that

(𝐼 ′ ++ Δ, 𝑜𝑝′,𝑂 ′)→𝑂∗ (𝐼 ′′′, 𝑜𝑝′′′,𝑂 ′′′)
and

(𝐼 ′′, 𝑜𝑝′′,𝑂 ′′) →𝑂∗ (𝐼 ′′′, 𝑜𝑝′′′,𝑂 ′′′)

Note that a simple inductive extension of this property tells us that we can introduce a single

additional chunk of data of any size interleaved with executing small steps for the operator, and

still end up in the same stuck state as if the data was present from the start. A further inductive

argument says that if we have several chunks to concatenate, they can be introduced at any time

interleaved with steps of the operator while still arriving at the same stuck state.

3.6 Streaming Progress
Streaming progress is a more challenging property to define. Unlike classic correctness properties

such as determinism, streaming progress is focused on ensuring that outputs are kept fresh with

respect to certain inputs. Let us first formally define freshness as output maximality.

Definition 3.2 (Output Maximality). We are given a well-typed (according to ⊢→) small-step

configuration ((𝑖0 . . . 𝑖𝑛), 𝑜𝑝,𝑂) and well-typed final outputs 𝑜 ′
0
. . . 𝑜 ′𝑚 such that:

((𝑖0, . . . , 𝑖𝑛), 𝑜𝑝,𝑂) →𝑂∗ (𝐼 ′, 𝑜𝑝′, (𝑜 ′
0
, . . . , 𝑜 ′𝑚)) and (𝐼 ′, 𝑜𝑝′, (𝑜 ′0, . . . , 𝑜 ′𝑚)) is stuck.

Then the given output 𝑜 ′
0
. . . 𝑜 ′𝑚 is maximal if

((fix (𝑖0), . . . , fix (𝑖𝑛)), 𝑜𝑝,𝑂) →𝑂∗ ((𝑖′′
0
, . . . , 𝑖′′𝑛 ), 𝑜𝑝′′, (fix (𝑜 ′0), . . . , fix (𝑜 ′𝑚)))

and ((𝑖′′
0
, . . . , 𝑖′′𝑛 ), 𝑜𝑝′′, (fix (𝑜 ′0), . . . , fix (𝑜 ′𝑚))) is stuck.

Consider our motivating example. Some operators (scan) can satisfy Output Maximality for all

inputs because at any point in the execution, we can reach a state where all outputs are released,

and no more outputs would be released if the input became fixed. But other operators (fold) cannot
satisfy Output Maximality for all inputs, because we never reach a state with any outputs released

unless the input is fixed, at which point the output is released (and hence changes).

This is where the stream types we introduced earlier come in, which will allow us to define a

property for streaming progress that works for all operators. Each operator annotates its inputs

and outputs with boundedness flags. Intuitively, if an input is unbounded, we want to prevent

the problem we have illustrated with fold: we do not want the operator to block until the input

becomes fixed. By contrast, if an input is bounded, it may make sense for an operator (e.g., fold)
to withhold some outputs until the input becomes fixed.

Output Maximality and stream types together enable us to ensure that an operator always keeps

its outputs as fresh as possible: bounded inputs are guaranteed to produce outputs (after becoming

fixed), as are unbounded inputs (since they do not block on fixedness).

Finally, to enable composition across multiple operators, we want to derive restrictions on

the outputs from input properties. Once the bounded inputs are fixed, the bounded outputs
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must become fixed in a finite number of steps to avoid blocking downstream operators. With that

intuition in place, we formally define streaming progress in terms of Output Maximality:

Definition 3.3 (Streaming Progress). Consider a well-typed operator 𝑜𝑝 with type ⊢𝑂 𝑜𝑝 :

((𝐼0, 𝐵𝐼 ,0) . . . (𝐼𝑛, 𝐵𝐼 ,𝑛)) ↩→ ((𝑂0, 𝐵𝑂,0) . . . (𝑂𝑚, 𝐵𝑂,𝑚)). Consider all well-typed inputs 𝑖0 . . . 𝑖𝑛 ∈ 𝐶
such that 𝐵𝐼 , 𝑗 = B =⇒ fixed (𝑖 𝑗 ) (the bounded inputs are fixed).
Let us also consider all well-typed initial outputs 𝑂 and final outputs 𝑜 ′

0
. . . 𝑜 ′𝑚 , such that:

((𝑖0, . . . , 𝑖𝑛), 𝑜𝑝,𝑂) →𝑂∗ (𝐼 ′, 𝑜𝑝′, (𝑜 ′
0
, . . . , 𝑜 ′𝑚))

and (𝐼 ′, 𝑜𝑝′, (𝑜 ′
0
, . . . , 𝑜 ′𝑚)) is stuck. Then the operator 𝑜𝑝 satisfies streaming progress if:

• 𝑜 ′
0
. . . 𝑜 ′𝑚 aremaximal for the operator 𝑜𝑝 with inputs 𝑖0 . . . 𝑖𝑛 and initial outputs 𝑂

• ∀𝑗 . 𝐵𝑂,𝑗 = B =⇒ fixed (𝑜 ′𝑗 ) (the bounded outputs are fixed)

Any operator in an implementation of Flo must satisfy these properties. We will show in the

next section that these properties are automatically preserved when composing operators into

graphs, which alleviates any further proof burden for the implementation.

4 Composition with Graphs
Programs in Flo are formed by composing operators into a directed-acyclic graph, where each

node is an operator and each edge captures an intermediate collection of data elements. In Flo,

we express these directed acyclic graphs as expressions of 𝐿𝐺 through recursive constructs for

sequential and parallel composition, such as in Figure 3.

map

filter

scan

join

map

map

(
(
(({_} map); ({_} scan)) |
({_} filter));

({_} join));
(({_} map) | ({_} map))

Fig. 3. A dataflow graph and its decomposition into an expression in our language (with parentheses for
clarity). Magenta boxes represent parallel composition and blue boxes represent sequential composition.

Unlike before, the graph language 𝐿𝐺 is not parameterized on any new definitions, and can be

directly layered on any instance of an operator language 𝐿𝑂 = (𝐿𝐶 , 𝐸𝑂 ,→𝛿 ,𝑂𝑅𝐷𝑂 , ⊢𝑂 ). We layer

on this language a few additional constructs:

• 𝐸𝐺 : the language of graph expressions, which are syntactic objects (Figure 4)

• ⊢: 𝑒𝐺 : (𝜏𝑆 ↩→ 𝜏𝑆 , ≺) a typing relation between elements 𝑒𝐺 ∈ 𝐸𝐺 , stream types 𝜏𝑆 ∈ [𝑇 𝑆 ],
and partial orders ≺∈ ⋃𝑛∈N (𝑂𝑅𝐷𝑂 )𝑛 (Figure 5)

• 𝑒𝑔 →Δ (𝑒𝑔,𝑂), a small-step operational semantics where 𝑂 ∈ [𝐶] and 𝑒𝑔 ∈ 𝐸𝐺 (Figure 6)

Wewill also augment this with the small-step relation:→ = {((𝑔,𝑂), (𝑔′,𝑂++𝑂 ′)) |𝑔→Δ (𝑔′,𝑂 ′)}
Sequential composition passes the outputs of one subgraph into the inputs of the other, and is the

primary way that operators can be chained together in a Flo program. Parallel composition makes

it possible to capture portions of the graph where several operators can be run independently on

separate sets of inputs to produce separate outputs. We lay out the grammar for graphs in Figure 4.

Note that we include a state term 𝑆 , which collects inputs to an operator. This term will be

essential when formalizing our small-step semantics, which needs to reason about buffered inputs
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𝑒 ::= 𝑒 |𝑒 | 𝑒; 𝑒 | {𝑆}[𝑂]

Fig. 4. The grammar for graphs of a Flo program, where 𝑆 ∈ [𝐸𝐶 ] and 𝑂 ∈ 𝐸𝑂 .

at an arbitrary position in a graph. Our type system models graphs in terms of their input and

output stream types, and a partial order over inputs like for operators. We list the typing rules for

graphs in Figure 5 and small-step operational semantics in Figure 6. In our semantics, we will use ·
to denote tuple concatenation, when dealing with types or values.

seqence

⊢ 𝑒1 : (𝐼1 ↩→ 𝑂1, ≺1) ⊢ 𝑒2 : (𝐼2 ↩→ 𝑂2, ≺2)
𝑂1 ≤ 𝐼2

⊢ 𝑒1; 𝑒2 : (𝐼1 ↩→ 𝑂2, ≺1)

par

⊢ 𝑒1 : (𝐼1 ↩→ 𝑂1, ≺1) ⊢ 𝑒2 : (𝐼2 ↩→ 𝑂2, ≺2)
⊢ 𝑒1 | 𝑒2 : (𝐼1 · 𝐼2 ↩→ 𝑂1 ·𝑂2, ≺1 · ≺2)

operator

⊢𝑂 𝑜𝑝 : (𝐼 ↩→ 𝑂, ≺) 𝐼 = ((𝑆0, 𝐵0), . . . (𝑆𝑛, 𝐵𝑛)) ∀𝑖 . type𝐶 (𝑠𝑖 ) = 𝑆𝑖

⊢ {(𝑠0, . . . , 𝑠𝑛)}[𝑜𝑝] : (𝐼 ↩→ 𝑂, (≺))

Fig. 5. Type semantics for graphs of a Flo program.

inputs(𝑒1; 𝑒2) ≜ inputs(𝑒1)
inputs(𝑒1 | 𝑒2) ≜ inputs(𝑒1) · inputs(𝑒2)

inputs({𝐼 }[𝑜𝑝]) ≜ 𝐼

setinput(𝑒1; 𝑒2, 𝐼 ) ≜ setinput(𝑒1, 𝐼 ); 𝑒2

setinput(𝑒1 | 𝑒2, 𝐼1 · 𝐼2) ≜ setinput(𝑒1, 𝐼1) | setinput(𝑒2, 𝐼2)
setinput({𝐼 }[𝑜𝑝], 𝐼 ′) ≜ {𝐼 ′}[𝑜𝑝] when |𝐼 | = |𝐼 ′ |

seqence-left

𝑒1 →Δ (𝑒′
1
, 𝐼 ′)

(𝑒1; 𝑒2) →Δ (𝑒1

′
; setinput(𝑒2, ⌊⟦inputs(𝑒2)⟧𝐶 ++ 𝐼 ′⌋𝐶 ),∅)

seqence-right

𝑒2 →Δ (𝑒′
2
,𝑂′)

(𝑒1; 𝑒2) →Δ (𝑒1; 𝑒′
2
,𝑂′)

par-left

𝑒1 →Δ (𝑒′
1
,𝑂′

1
)

(𝑒1 | 𝑒2) →Δ (𝑒′
1
| 𝑒2,𝑂

′
1
,∅)

par-right

𝑒2 →Δ (𝑒′
2
,𝑂′

2
)

(𝑒1 | 𝑒2) →Δ (𝑒1 | 𝑒′2,∅,𝑂
′
2
)

operator

(⟦𝐼⟧𝐶 , 𝑜𝑝) →𝛿 (𝐼 ′, 𝑜𝑝′,𝑂′)
({𝐼 }[𝑜𝑝]) →Δ ({⌊𝐼 ′⌋𝐶 }[𝑜𝑝′],𝑂′)

Fig. 6. Small-step semantics for graphs of a Flo program.

Before we continue, let us prove that graphs satisfy preservation.

Lemma 4.1 (Graph Preservation). Given a graph𝑔 of type (𝐼 ↩→ 𝑂, ≺), output state 𝑆 = (𝑠0 . . . 𝑠𝑛),
and updated output state 𝑆 ′ = (𝑠′

0
. . . 𝑠′𝑛) such that 𝑂 = ((𝑇0, _) . . . (𝑇𝑛, _)) and ∀𝑖 . type𝐶 (𝑠𝑖 ) = 𝑇𝑖 , if

(𝑔, 𝑆) takes a step to (𝑔′, 𝑆 ′), then 𝑔′ is also of type (𝐼 ↩→ 𝑂, ≺) and ∀𝑖 . type𝐶 (𝑠′𝑖 ) = 𝑇𝑖 .
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Proof. We can prove this by structural induction over the graph.

Base Case: A graph with a single operator. By operator preservation, we know that the type

of 𝐼 is the same as the type of 𝐼 ′, that 𝑜𝑝′ has the same type, and that 𝑂 ′ has the same type as 𝑂 .

Therefore, the graph as a whole has the same type and the output is of the correct type.

Inductive Step: Proof by cases:

Sequential Composition: If we apply the sequence-left rule, then by induction we know that

𝑒1 has the same type as 𝑒′
1
, and 𝐼 ′ has the same types as the inputs of 𝑒2. Therefore, when we set

the inputs of 𝑒2 to 𝐼
′
, we preserve the typing (due to well-formedness of the denotational lifting

and syntactical lowering). Since the output is unchanged, we satisfy preservation.

If we apply the sequence-right rule, then by induction we know that 𝑒2 has the same type as 𝑒′
2
,

and the output has the same type due to concatenation. Therefore, we satisfy preservation.

Parallel Composition: In both rules, we use induction to know the types of both sides are

preserved. The typing rule for parallel simply composes these types, so we are done. □

4.1 Graph Stuck State
Now, let us extend the properties we require of operators to graphs as a whole. First, we will extend

Operator Stuck State (Lemma 3.1).

Lemma 4.2 (Graph Stuck State). Given a graph initialized with a fixed set of input collection
values, running the graph will eventually reach a stuck state where no additional steps can be taken.

Proof. We can prove this by structural induction over the graph.

Base Case: A graph with a single operator. By Lemma 3.1.

Inductive Step: A graph such that its subgraphs satisfy Graph Stuck State. Proof by cases:

Sequential Composition: There are only two small steps that can be taken at any point, for the

left or right. If we only step one of the two subgraphs, by induction that side will eventually reach

a stuck state. If the left side reaches a stuck state, then running the right side will never re-enable

the left side by the definition of→. If the right side reaches a stuck state, we may be able to run the

left side which may re-enable the right side, but this will cycle back to the left and eventually the

left side will be stuck. Therefore, the graph as a whole will reach a stuck state.

Parallel Composition: The two subgraphs are independent, and so by the inductive hypothesis

we know that both will eventually reach a stuck state, and their composition is a stuck state. □

4.2 Determinism and Eager Execution
The most significant change between reasoning about operators in isolation and the composition

of them is that at any point when executing a graph, there may be multiple small steps for each

operator that can be taken. We need to prove we can non-deterministically execute these operators

while arriving at the same output. To prove this for all graphs, we will also need to extend Eager

Execution to graphs. These proofs are mutually recursive, so we will prove them simultaneously.

Both our definitions look nearly identical to those for operators, just with the use of the general

small step relation rather than only for operators.

A quick aside on notation. In this section, we will use the shorthand {𝐼 }𝑔 to denote a graph 𝑔

whose inputs are set to 𝐼 , so {𝐼 }𝑔 = setinput (𝑔, 𝐼 ).

Definition 4.1 (Determinism). Consider a graph 𝑔. For all inputs 𝐼 and initial outputs 𝑂 where a

small step for ({𝐼 }𝑔,𝑂) exists, there exists a later state 𝑔′, inputs 𝐼 ′, and outputs 𝑂 ′ such that in

every trace of small steps ({𝐼 }𝑔,𝑂) →∗ ({𝐼 ′}𝑔′,𝑂 ′) we eventually reach this later state.



Flo: a Semantic Foundation for Progressive Stream Processing 13

Note that combined with stuck states (Lemma 4.2), this implies that every graph will eventually

reach a unique stuck state. This is because we can always take a series of steps to arrive at the

same later state, and eventually we will reach a point where no more steps can be taken.

Definition 4.2 (Eager Execution). Consider a graph 𝑔. For all input streams 𝐼 , output streams 𝑂 ,

delta set Δ, updated graph 𝑔′, input stream, 𝐼 ′, and output stream 𝑂 ′ such that

({𝐼 }𝑔,𝑂) → ({𝐼 ′}𝑔′,𝑂 ′)
there exists a stuck state 𝑓 such that

({𝐼 ++ Δ}𝑔,𝑂)→∗ 𝑓 and ({𝐼 ′ ++ Δ}𝑔′,𝑂 ′) →∗ 𝑓

Lemma 4.3. Consider any expression. It must satisfy:
(1) Determinism
(2) Eager Execution

Proof. We can prove this by structural induction over the graph.

Base Case: A graph with a single operator.

(1) By confluence of→𝑂
.

(2) By Definition 3.1.

Inductive Step: A graph such that its subgraphs satisfy both (1) and (2). Proof by cases:

Sequential Composition: a graph of form 𝑎;𝑏

(1) We know that there is at least one small-step that can be taken, and the only options are to

recursively step 𝑎 or 𝑏. Let us define an execution trace that captures an ordered sequence

of small-steps to take. This trace will have the form “(𝑎𝑖 |𝑏)+”, with each element directing

us to take the corresponding small step corresponding to the named subgraph, with the

indices for 𝑎 counting up from 0. Given a trace 𝑡 =“𝑠0 . . . 𝑠𝑛”, we define→𝑡 to take the steps

in order. For each instance of 𝑎𝑖 , the index lets us uniquely identify the small-step rule that

will be applied to 𝑎. For 𝑏, the token represents taking any small-step on 𝑏. We will call a

trace after which no more steps can be taken a terminating trace.
Next, let us define equivalence between a pair of traces 𝑡1 and 𝑡2. Two traces are equivalent

if executing both on the same initial state results in the same final state, even with non-

deterministic selection of which small-step to run for each 𝑏. We will prove that for any

pair of terminating traces 𝑡1 and 𝑡2, the traces are equivalent.

Consider a trace of the form “prefix 𝑏 𝑎𝑖 . . . 𝑎 𝑗 𝑏
∗
”. The execution of this looks like

({𝐼𝑝𝑎 }𝑎𝑝 ; {𝐼𝑝
𝑏
}𝑏𝑝 ,𝑂𝑝 ) →prefix ({𝐼𝑎}𝑎; {𝐼𝑏}𝑏,𝑂) →𝑏 ({𝐼𝑎}𝑎; {𝐼 ′

𝑏
}𝑏′,𝑂 ′)

→𝑎𝑖 ... 𝑗 ({𝐼 ′𝑎}𝑎′; {𝐼 ′′𝑏 }𝑏
′,𝑂 ′) →∗

𝑏
({𝐼 ′𝑎}𝑎′; {𝐼 ′′′𝑏 }𝑏

′′,𝑂 ′′)
First, by the definition of→Δ

, we know that 𝐼 ′′
𝑏
= 𝐼 ′

𝑏
++Δ𝑖 ++Δ𝑖+1 . . .. Then, inductively Eager

Execution applied to 𝑏 lets us rewrite “𝑏 𝑎𝑖 . . . 𝑎 𝑗 𝑏
∗
” to “𝑎𝑖 . . . 𝑎 𝑗 𝑏

∗
” (note that the number

of trailing 𝑏 in the rewritten suffix may be arbitrary), because the execution of 𝑎𝑖 . . . 𝑎 𝑗
simply introduces additional data for 𝑏 to process. This results in the following execution

({𝐼𝑝𝑎 }𝑎𝑝 ; {𝐼𝑝
𝑏
}𝑏𝑝 ,𝑂𝑝 ) →prefix ({𝐼𝑎}𝑎; {𝐼𝑏}𝑏,𝑂)

→𝑎𝑖 ... 𝑗 ({𝐼 ′𝑎}𝑎′; {𝐼𝑏 ++ Δ𝑖 ++ Δ𝑖+1 . . .}𝑏,𝑂) →∗𝑏 ({𝐼
′
𝑎}𝑎′; {𝐼 ′′′𝑏 }𝑏

′′,𝑂 ′′)
Therefore, the trace prefix 𝑏 𝑎𝑖 . . . 𝑎 𝑗 𝑏

∗
is equivalent to prefix 𝑎𝑖 . . . 𝑎 𝑗 𝑏

∗
.

If we repeatedly apply this rewrite to both traces to pull all 𝑎𝑖 to the front, we will arrive at

two traces of the form 𝑎0 . . . 𝑎𝑛 𝑏
∗
and 𝑎0 . . . 𝑎𝑚 𝑏∗. We know that both original traces are



14 Shadaj Laddad, Alvin Cheung, Joseph M. Hellerstein, and Mae Milano

terminating, therefore after running 𝑎0 . . . 𝑎𝑛 and 𝑎0 . . . 𝑎𝑚 even though the 𝑏s between

the elements have been removed, there will be no more small steps that can be taken on 𝑎. By

determinism from induction, since 𝑎 has terminated the traces 𝑎0 . . . 𝑎𝑛 and 𝑎0 . . . 𝑎𝑚 result

in the same state and are equivalent. Similarly, because our rewrites preserve equivalence,

by determinism we know that after running 𝑏∗ on both traces, we will reach the same final

state. Therefore, the traces are equivalent and 𝑎;𝑏 satisfies determinism.

(2) We can split into cases based on the small step that could be taken.

Case 1: The small step is on 𝑎. By Definition 4.2, we know that we can introduce the delta

before or after the small step on 𝑎 and then continue running small steps for 𝑎 until reaching

the common later state for 𝑎, which is also our overall later state 𝑓 .

Case 2: The small step is on 𝑏. If we run the small step, then introduce the delta, let the

state immediately after introducing the delta be 𝑓 . If we instead first introduce the delta,

then run 𝑏, the state after is also 𝑓 because running the small step for 𝑏 is unaffected by the

introduction of the delta.

Parallel Composition: a graph of form 𝑎 |𝑏

(1) The small steps for a parallel composition just run the small steps for either side, which are

independent. Therefore by induction both sides will step to a deterministic state.

(2) In parallel composition, the introduction of a delta results in independent chunks being

added to both sides. If we step the graph first, that just steps one of the sides, so the inductive

hypothesis holds on one of the sides and the other side is unaffected.

□

4.3 Streaming Progress
Lemma 4.4 (Streaming Progress for Graphs). Consider a well-typed graph 𝑔 with type ⊢

𝑔 : (((𝐼0, 𝐵𝐼 ,0) . . . (𝐼𝑛, 𝐵𝐼 ,𝑛)) ↩→ ((𝑂0, 𝐵𝑂,0) . . . (𝑂𝑚, 𝐵𝑂,𝑚)), ≺) such that inputs(𝑔) = 𝑖0 . . . 𝑖𝑛 and
𝐵𝐼 , 𝑗 = B =⇒ fixed (𝑖 𝑗 ). Consider all well-typed outputs 𝑂 and 𝑜 ′

0
. . . 𝑜 ′𝑚 such that

(𝑔,𝑂) →∗ (𝑔′, (𝑜 ′
0
, . . . , 𝑜 ′𝑚))

and (𝑔′, (𝑜 ′
0
, . . . , 𝑜 ′𝑚)) is stuck. Then 𝑜 ′𝑗 must be fixed if 𝐵𝑂,𝑗 = B and there must also be a stuck state

({(fix (𝑖0), . . . , fix (𝑖𝑛))}𝑔,𝑂) →∗ (𝑔′′, (fix (𝑜 ′0), . . . , fix (𝑜 ′𝑚)))

Proof. We can prove this by structural induction over the graph.

Base Case: A graph with a single operator. By Definition 3.3.

Inductive Step: Proof by cases:

Sequential Composition: We can apply Lemma 4.3 to only focus on traces where we run the

left half until stuck state and then the right half. First, we apply streaming progress to the left half,

which tells us that we will output intermediate collections such that each output with a bounded

stream type will have a fixed value. This satisfies the premise for induction on the right subgraph,

so we can apply streaming progress again to know that each bounded output will be fixed. Using

the same proof structure, we know that the intermediate collections will be maximal with respect

to the unbounded inputs, so the final outputs will be maximal as well.

Parallel Composition: Because both sides are independent, we can simply use induction on

each side. Because all bounded outputs will be fixed and all outputs are maximal with respect to

the unbounded inputs, we satisfy streaming progress. □
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5 Nested Streams and Graphs
So far, we have considered dataflow programs with a direct path of operators from each input to

the outputs. But for many applications, it is necessary to perform stateful, iterative computations

over an input stream. In Flo, we tackle this using constructs for nested streams and graphs.
Before we dive into formal semantics, let us lay out a high-level overview of our approach to

nesting. First, we introduce nested streams, which are a specific type of stream that encapsulate

several smaller streams. We define a set of restrictions for how operators must generate such nested

streams, in particular how boundedness of the inner streams is enforced.

Once we have nested streams, we need an operator that can transform them. This is where

the nest operator comes in, which makes it possible to transform a nested stream by defining a

nested Flo graph that should be run on each inner stream. We introduce the write_defer and

read_defer operators, which can be used to pass state across the iterations for each inner stream to

enable iterative computation. We prove that these operators satisfy all the core operator properties,

therefore preserving the high-level guarantees we have established for Flo.

5.1 Nested Streams
Our definition of Flo so far has dealt only with an abstract notion of collections and operators. But

the nest operator is a concrete instance, and so we also need a concrete collection type for it to

consume and produce. Furthermore, this collection type must store nested streams in a way that

preserves boundedness properties and allows the inner graph to manipulate the inner streams.

To tackle this, we introduce the ordered sequence of streams in Figure 7. This collection type,

denoted [(𝑆0, . . . 𝑆𝑛)] is parameterized over several inner stream types 𝑆𝑖 = (𝐶𝑖 , 𝐵𝑖 ). Values of this
type are stored as a list of tuples [(𝑐0,0, . . . 𝑐0,𝑛), . . . , (𝑐𝑚,0, . . . 𝑐𝑚,𝑛)], where each 𝑐𝑖, 𝑗 is a value of

type 𝐶 𝑗 . The terminator symbol ⊗ indicates the end of a stream.

[((𝐶1,𝐵1), . . . , (𝐶𝑚, 𝐵𝑚))] ≜ { [(𝑐1,1, . . .), . . . , (𝑐𝑛,1, . . .)] |
∀𝑖, 𝑗 𝑐𝑖, 𝑗 ∈ 𝐶 𝑗 ∧ (𝑖 > 1 ∧ 𝐵 𝑗 = B) =⇒ fixed (𝑐𝑖, 𝑗 )

} ∪ { [⊗, (𝑐1,1, . . .), . . . , (𝑐𝑛,1, . . .)] |
∀𝑖, 𝑗 𝑐𝑖, 𝑗 ∈ 𝐶 𝑗 ∧ (𝐵 𝑗 = B) =⇒ fixed (𝑐𝑖, 𝑗 )}

[⊗, . . .] ++ 𝑥 = [⊗, . . .]
[𝑐1, . . . , 𝑐𝑛] ++ ⊗ = [⊗, 𝑐1, . . . , 𝑐𝑛]

[𝑐1, . . . , 𝑐𝑛] ++ ((𝑣1, . . . , 𝑣𝑚), true) = [(𝑣1, . . . , 𝑣𝑛), 𝑐1, . . . , 𝑐𝑛]
[(𝑣1, . . . , 𝑣𝑚), . . . , 𝑐𝑛] ++ ((𝛿1, . . . , 𝛿𝑚), false) = [(𝑣1 ++ 𝛿1, . . . , 𝑣𝑚 ++ 𝛿𝑚), . . . , 𝑐𝑛]

Fig. 7. The collection type and concatenation operator for the ordered sequence of streams.

The concatenation operator on this collection type takes an ordered sequence of streams and

either the terminator ⊗, the tuple of the boolean true and a tuple of collections values matching the

inner stream types, or a tuple of the boolean false and a tuple of concatenation values corresponding

to the right-hand side accepted by ++ for each inner stream type. If the boolean flag is true, the

concatenation operator extends the collection with the tuple used as the new leftmost value. If it is

false, the operator uses the concatenation operator of each of the inner stream types to extend the

existing leftmost collections with the new values.

There is another key concern we need to address. Once a new tuple of collections is pushed into

the ordered sequence, none of the other tuples will ever grow through concatenation. We need to
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ensure that these finalized tuples satisfy the restrictions of the inner stream types; in particular

that they satisfy boundedness properties. To do this, we require that all tuples of collections after

the leftmost one have fixed collections for each bounded stream type.

5.2 Nesting Graphs
The nest operator maps nested streams by transforming their inner streams one-by-one using an

inner Flo graph. These inner graphs have special privileges: they can define iterative computations
by passing data across executions on subsequent inner streams. To do this, developers use pairs

of read_defer and write_defer operators with matching keys. Any data sent to a write_defer
operator will be emitted by the corresponding read_defer operator when processing the next

inner stream (for the first step, read_defer takes an initial value as a parameter).

Before we dive into the formal semantics of these operators, let us walk through a simple example

to show how nest, write_defer, and read_defer can be combined to enable iterative computation.

We will implement a classic iterative algorithm where we are given a set of directed edges and

want to compute which nodes are reachable from a root within a fixed radius. Our algorithm starts

with a single root node, and in a loop identifies the next “layer” of reachable nodes.

repeat_nested

edges

5

nest

read_defer(“reached”, {0})

join

write_defer(“reached”)

tee

Fig. 8. An example of identifying nodes within a fixed radius using nested graphs.

First, we need a collection type for sets of nodes and sets of edges (using standard semantics),

along with some operators inspired by relational algebra. We omit the detailed semantics for brevity,

but these are straightforward to define. The join operator takes in a set of nodes and a set of edges,

and identifies the destination of all edges originating at a node in the input set. The tee operator
consumes a single stream and emits a pair of streams, each duplicating the input.

Next, we must generate a stream-of-streams that drives the nested graph. For graph reachability

within a fixed radius 𝑛, we need to run 𝑛 iterations of the inner graph. To achieve this, we introduce

a repeat_nested operator which consumes a stream and a natural number singleton 𝑘 , and emits

a stream with 𝑘 inner streams, each of which duplicates the contents of the input.

Putting these operators together, we show how to implement this algorithm in Figure 8. On

every iteration, we first collect the nodes reached up to the previous iteration using read_defer,
with an initial value of just the root node 0. Then, we emit the next layer of reachable nodes and

also send them to write_defer to be used in the next iteration. In the output of this program, we

will have a stream of sets of nodes, where each set contains the nodes reachable from the root with

increasing radii up to the fixed limit.

In Flo, nest is a standard operator that satisfies all the proof obligations, so it can be... nested!

This makes it possible to build arbitrarily complex nested cycles. For example, we can tweak the

graph reachability example to allow recomputing the reachability analysis with extended radii. In

this algorithm, we can use the output from a previous query to “bootstrap” the next query, and

only run iterations to extend the radius rather than starting from scratch.
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repeat_nestededges

nest

read_defer(“reached”, {})

join

write_defer(“reached”)

tee

queries

nest

nest_once

read_defer(“prev”, {0})

union

tee

write_defer(“prev”)

last

zip
zip

Fig. 9. An example of graph reachability with a dynamic radius, using nested cycles.

In this example program, we assume that the input edges have already been shaped into an

unbounded stream-of-streams where each inner stream contains the full set of edges
2
. The queries,

which represent expansions of the radius, are also a stream-of-streams where each inner stream

is a singleton containing the amount to expand the radius by. We use a new zip operator to feed

multiple nested streams into nest by tupling their inner streams pairwise.

We use a new last operator to extract the final set emitted by reachability, which we defer to

bootstrap the next query. To inject these nodes, we use a new operator nest_once which generates

an infinite stream-of-streams where the first inner stream contains the input and the rest are empty.

Then, inside the reachability graph, we use union (which performs set union) to add the bootstrap

nodes. Finally, we use repeat_nested as before to drive iterations of graph reachability.

5.3 Type Semantics
Now, we are ready to lay out the formal semantics for nested graphs, beginning with the type

semantics. First, we define the defer operators: write_defer takes a key as a parameter and

accumulates a bounded stream as input, and on the next iteration any matching read_defer with

the same key will emit the accumulated collection. Type-safety for these operators is a bit more

complex, since we need to ensure that there is a single write_defer for each key and that the

stream types being written match the types being read.

To achieve this, we introduce a new pair of contexts 𝑅 and𝑊 to our typing rules (⊢ and ⊢𝑂 )
which each store a map from keys to stream types. We will use context𝑊 substructurally, admitting

only exchange (but not weakening or contraction) on this context. When typing a nested graph,

these contexts are set to (arbitrary) identical values, which enforces that the same types are written

and read. On the write-side, we also enforce that each key is written exactly once by splitting the

𝑊 keys at each composition until there is one key isolated to each write_defer. For read_defer,
we have two variants because the optional second parameter stores a value to be emitted.

The nest operator takes a graph 𝑔 of type 𝐼 ↩→ 𝑂 with partial order ≺𝑔 . Each stream in𝑂 must be

bounded so that the inner graph finishes in finite time. The operator itself takes a stream of streams

and emits a stream of streams, where the inner types are 𝐼 and 𝑂 respectively. The boundedness

of the outer output (denoted 𝑋 ) is the same as the outer input. We also include a variant of nest
with an additional parameter that stores the initial graph for the next iteration. We re-define our

2
We could also consume the set of edges only once and “persist” them across iterations of the nested graph by sending a

copy across a defer cycle. But that adds complexity to this example that distracts from nested cycles.
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seqence

𝑅;𝑊1 ⊢ 𝑒1 : (𝐼1 ↩→ 𝑂1, ≺1) 𝑅;𝑊2 ⊢ 𝑒2 : (𝐼2 ↩→ 𝑂2, ≺2) 𝑂1 ≤ 𝐼2

𝑅;𝑊1,𝑊2 ⊢ 𝑒1; 𝑒2 : (𝐼1 ↩→ 𝑂2, ≺1)

par

𝑅;𝑊1 ⊢ 𝑒1 : (𝐼1 ↩→ 𝑂1, ≺1) 𝑅;𝑊2 ⊢ 𝑒2 : (𝐼2 ↩→ 𝑂2, ≺2)
𝑅;𝑊1,𝑊2 ⊢ 𝑒1 | 𝑒2 : (𝐼1 · 𝐼2 ↩→ 𝑂1 ·𝑂2, ≺1 · ≺2)

operator

𝑅;𝑊 ⊢𝑂 𝑜𝑝 : (𝐼 ↩→ 𝑂, ≺) 𝐼 = ((𝑆0, 𝐵0), . . . (𝑆𝑛, 𝐵𝑛)) ∀𝑖 . type𝐶 (𝑠𝑖 ) = 𝑆𝑖

𝑅;𝑊 ⊢ {(𝑠0, . . . , 𝑠𝑛)}[𝑜𝑝] : (𝐼 ↩→ 𝑂, (≺))

read-defer-value-type

type𝐶 (𝑣) = 𝐶 fixed (⟦𝑣⟧𝐶 )
𝑅, 𝑘 : 𝐶; ∅ ⊢𝑂 read_defer(k, v) : (() ↩→ (𝐶,B), ∅)

read-defer-no-value-type

𝑅, 𝑘 : 𝐶; ∅ ⊢𝑂 read_defer(k) : (() ↩→ (𝐶,B), ∅)

write-defer-type

𝑅;𝑘 : 𝐶 ⊢𝑂 write_defer(k) : ((𝐶,B) ↩→ (), ∅)

nest-type

𝐷 ;𝐷 ⊢ 𝑔 : (𝐼 ↩→ (𝑂1, . . .), ≺𝑔) ∀𝑖 . 𝑂𝑖 = (𝐶𝑖 ,B)
𝑅; ∅ ⊢𝑂 nest(𝑔) : (( [𝐼 ], 𝑋 ) ↩→ ([(𝑂1, . . .)], 𝑋 ), ≺nest (≺𝑔))

nest-with-copy-type

𝐷 ;𝐷 ⊢ 𝑔 : (𝐼 ↩→ (𝑂1, . . . 𝑂𝑚), ≺𝑔) 𝐷 ;𝐷 ⊢ 𝑔𝑜 : (𝐼 ↩→ (𝑂1, . . . 𝑂𝑚), ≺𝑔) 𝑂𝑖 = (𝐶𝑖 ,B)
𝑅; ∅ ⊢𝑂 nest(𝑔,𝑔𝑜 ) : (( [𝐼 ], 𝑋 ) ↩→ ([(𝑂1 . . . 𝑂𝑚)], 𝑋 ), ≺nest (≺𝑔))

Fig. 10. Type semantics with defer contexts, and for read_defer, write_defer, and nest.

core composition type semantics with these contexts as well as for write_defer, read_defer, and
nest in Figure 10. Note that this requires a modification to the full type system; we do this in the

usual way. In particular, note that as existing operators never have graphs as subterms, they will be

lifted into our context-enhanced system with arbitrary 𝑅 and empty𝑊 contexts.

5.4 Operational Semantics
The nest operator processes tuples of inner streams one-by-one, maintaining the current inner

streams at the rightmost element of the input. It shifts to the next tuple of inner streams once the

graph reaches a stuck state and all the outputs (including those to write_defer) are fixed. The
nest operator first stores a copy of the initial graph as a second parameter (this variant is lower

in the partial order for nest). To process an inner stream, we use setinput to set the inner graph
inputs, step the inner graph, and then use inputs to propagate input consumption to the nested

stream. Once the input only contains a terminator, the operator emits a terminator as well.

Note that write_defer has no small-step rules; its behavior is handled by the semantics for

nest. The read_defer operator takes a single small-step, which emits its collection parameter.

This collection parameter is either a default value (for the first tuple of inner streams) or a value

from write_defer. When shifting to the next inner stream input, we use the collect_defer helper
to accumulate the inputs to each write_defer into a map, and then use the set_defer helper to
create a copy of the initial graph with the corresponding read_defer operators updated to use

those collections. We visualize this behavior in Figure 11 where a stream-of-streams on the left,

with later elements lower, is transformed into another stream-of-streams. We then lay out the

formal operational semantics in Figure 12.
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([…], 
[…])

…

([…], 
[…])

nest

inner Flo graph
read_defer(0)

…
write_defer(0)

inner Flo graph
read_defer(0)

…
write_defer(0)

…

([…])

…

([…])

Fig. 11. Visualization of the nest, read_defer, and write_defer operators, where the nested streams on
the left and right have later elements lower.

collect_defer(𝑒1; 𝑒2) ≜ collect_defer(𝑒1) ∪ collect_defer(𝑒2)
collect_defer(𝑒1 | 𝑒2) ≜ collect_defer(𝑒1) ∪ collect_defer(𝑒2)

collect_defer({𝐼 }[write_defer (k)]) ≜ {𝑘 : 𝐼 }
collect_defer({𝐼 }[𝑜𝑝]) ≜ ⊗ when 𝑜𝑝 ≠ write_defer

set_defer(𝑒1; 𝑒2, 𝑀) ≜ set_defer(𝑒1, 𝑀); set_defer(𝑒2, 𝑀)
set_defer(𝑒1 | 𝑒2, 𝑀) ≜ set_defer(𝑒1, 𝑀) | set_defer(𝑒2, 𝑀)

set_defer({}[read_defer (𝑘, 𝑣)], 𝑀) ≜ {}[read_defer (𝑘,𝑀 [𝑘])]
set_defer({𝐼 }[𝑜𝑝], 𝑀) ≜ {𝐼 }[𝑜𝑝] when 𝑜𝑝 ≠ read_defer

nest-first

𝐼 ≠ ⊗
([. . . , 𝐼 ], nest(𝑔)) →𝛿 ( [. . . , 𝐼 ], nest(𝑔,𝑔), ((⊥, . . . ,⊥), 𝑡𝑟𝑢𝑒))

nest-first-fixed

( [⊗], nest(𝑔)) →𝛿 ( [⊗], nest(𝑔,𝑔), ⊗)

nest-run-graph

(setinput (𝑔, ⌊𝐼⌋𝐶 )) →Δ (𝑔′, (𝑂 ′
1
, . . . ,𝑂 ′𝑚))

( [. . . , 𝐼 ], nest(𝑔,𝑔𝑜 )) →𝛿 ( [. . . , ⟦inputs(g′)⟧𝐶 ], nest(𝑔′, 𝑔𝑜 ), ((𝑂 ′1, . . . ,𝑂
′
𝑚), 𝑓 𝑎𝑙𝑠𝑒))

nest-run-step

(setinput (𝑔, ⌊𝐼⌋𝐶 ), (𝑂1, . . . ,𝑂𝑚)) is stuck ∀𝑚.fixed (𝑂𝑚) ∀𝑑∈collect_defer(𝑔) fixed (𝑑) 𝐼𝑛𝑒𝑥𝑡 ≠ ⊗

([. . . , 𝐼𝑛𝑒𝑥𝑡 , 𝐼 ], nest(𝑔,𝑔𝑜 )) →𝛿 ( [. . . , 𝐼𝑛𝑒𝑥𝑡 ], nest(set_defer(𝑔𝑜 , collect_defer(𝑔)), 𝑔𝑜 ), ((⊥, . . . ,⊥), 𝑡𝑟𝑢𝑒))

nest-run-fixed

(setinput (𝑔, ⌊𝐼⌋𝐶 ), (𝑂1, . . . ,𝑂𝑚)) is stuck ∀𝑚.fixed (𝑂𝑚)
( [⊗, 𝐼 ], nest(𝑔,𝑔𝑜 )) →𝛿 ( [⊗], nest(𝑔𝑜 , 𝑔𝑜 ), ⊗)

read-defer-emit

((), read_defer(𝑘, 𝑣)) →𝛿 ((), read_defer(𝑘), 𝑣)

Fig. 12. Small-step semantics for the nest and read_defer operators.
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5.5 Operator Properties
Because nest is a standard operator, it must satisfy all Flo’s core operator properties. First, we

define the partial order ≺nest (≺𝑔), which is parameterized over the partial order for the inner

graph. Our small step semantics either consume the rightmost input inner stream or reduce it

according to the nested graph’s partial order. So we have

[...] ≺nest (≺𝑔) [..., 𝐼 ]
[..., 𝐼 ′] ≺nest (≺𝑔) [..., 𝐼 ] if 𝐼 ′ ≺𝑔 𝐼

⊗ ≺nest (≺𝑔) [...]
For read_defer, any operator expression without the value parameter is smaller than any with

it, so the step for read_defer reduces the operator expression. Since write_defer takes no steps,

it satisfies our operator proof obligations trivially. We can now prove the properties of nest.
Operator Well-Formedness:

Proof. Whenwe step across an input (nest-run-step and nest-run-fixed), the input is updated

to a prefix, which satisfies our first case of the partial order. The only other rule that modifies inputs

is nest-run-graph, which will only touch the inputs if it recursively steps a left-most operator

that consumes those inputs. Because of Lemma 3.1, we know that running any of these operators

will reduce the input along the partial order for the inner graph. □

Operator Preservation:

Proof. There are only two ways we modify the inputs and outputs; either we push or pop

an entire tuple of inner streams or update the rightmost input or leftmost output. In the first

case, we only push ⊥, and popping does not affect the type of the collection. When we update an

input/output instead, Lemma 4.1 guarantees that this is safe. In all our rules, the operator is only

changed by setting the inputs of the graph, which is safe because the input types are unchanged. □

Operator Determinism:

Proof. First, nest-first or nest-first-fixed will execute, then nest-run-graph will run until

stuck state, then nest-run-step will run, until the input stream is fixed and nest-run-fixed is

run. In nest-run-graph, the only rule where we recursively apply a step, we know that the stuck

state exists (Lemma 4.2) and is deterministic (Lemma 4.3). Therefore, nest is deterministic. □

Eager Execution:

Proof. For nest-first-fixed and nest-run-fixed, because the input collection is already fixed

deltas have no effect. For nest-first, regardless of whether the delta is introduced before or after,

the final state will be the same because we copy the input as-is and a concatenation will never affect

𝐼 ≠ ⊗ because an element can never be replaced by the terminator. Because nest-run-graph will

run until the inner graph reaches a stuck state, we can apply Lemma 4.3 to know that introducing

a delta before or after the step will result in the same final state, because introducing a delta to the

nested stream will only affect the last element 𝐼 . For nest-run-step, the delta will never affect 𝐼 ,

and any delta to 𝐼𝑛𝑒𝑥𝑡 will be applied the same before or after the step. □

Streaming Progress:

Proof. If the input is bounded, the output will become fixed because each iteration will finish in

finite time by Lemma 4.4. If it is unbounded, the input sequence being fixed only affects nest-first-

fixed and nest-run-fixed rules, which simply concatenate a terminator to the output sequence

without modifying it in any other way. □



Flo: a Semantic Foundation for Progressive Stream Processing 21

6 Case Studies
Flo aims to provide strong guarantees that are meaningful across a range of applications while

remaining sufficiently abstract to capture a variety of semantics. In this section, we demonstrate the

expressiveness of Flo by using it to implement the key ideas found in existing streaming languages.

Note that our goal is not to show how to implement these entire languages in Flo, rather that key

ideas from them can be expressed and satisfy our properties. We focus on three existing languages:

(1) Flink [15], a popular streaming framework that features windowed aggregation functions.

(2) LVars [30], a language for parallel programming that uses lattices to ensure determinism.

(3) DBSP [13], a system for incremental view maintenance that uses z-sets to model relations.

6.1 Flink
Flink [15] is a classic example of a streaming dataflow language. Like Flo, Flink uses compositions of

operators to describe computations over streams. A key technique from Flink is the use of windows
to enable aggregations over fixed-time intervals of an infinite stream. We will show that this idea

from Flink can be modeled in Flo as a timestamped collection type, where windowing operators

generate streams-of-streams which can then be aggregated in a nested graph.

Flink uses ordered sequences as its primary semantics for streams. We can model this in Flo by

introducing an ordered sequence collection, which simply stores a list of values where the newest

items are on the left and the oldest elements on the right. We define this collection in Figure 13.

S<V> ≜ {[𝑣1, . . . , 𝑣𝑛] | ∀𝑖 . 𝑣𝑖 ∈ 𝑉 } ∪ {[⊗, 𝑣1 . . . 𝑣𝑛] | ∀𝑖 . 𝑣𝑖 ∈ 𝑉 }
[𝑣1, . . . , 𝑣𝑛] ++ [𝑑1, . . . , 𝑑𝑚] = [𝑑1, . . . , 𝑑𝑚, 𝑣1, . . . , 𝑣𝑛]

[⊗, . . .] ++ 𝑥 = [⊗, . . .]
[𝑣1, . . . , 𝑣𝑛] ++ ⊗ = [⊗, 𝑣1, . . . , 𝑣𝑛]

Fig. 13. Collection type and concatenation operator for ordered sequences in Flo.

With a collection type for ordered sequences, we can define classic operators found in Flink

such as map. We can also define semantics for fold that matches the Flink semantics of emitting a

stream containing a single value, which is the result of the aggregation. We can define the type and

operational semantics for these operators in Figure 14 (we omit partial orders for brevity).

map-type

⊢ 𝑓 : 𝑇 → 𝑈

⊢𝑂 map(𝑓 ) : ((S<T>, 𝑋 ) ↩→ (S<U>, 𝑋 ), ≺map)

map

𝑓 (ℎ) ⇓ 𝑢
( [. . . , ℎ],map(𝑓 )) →𝛿 ( [. . .],map(𝑓 ), [𝑢])

map-terminator

( [⊗],map(𝑓 )) →𝛿 (⊗,map(𝑓 ), ⊗)

fold-type

⊢ 𝑎𝑐𝑐 : 𝑈 ⊢ 𝑓 : (𝑈 ,𝑇 ) → 𝑈

⊢𝑂 fold(𝑎𝑐𝑐, 𝑓 ) : ((S<T>, 𝐵) ↩→ (S<U>, 𝐵), ≺
fold
)

fold

𝑓 (𝑎𝑐𝑐, ℎ) ⇓ 𝑎𝑐𝑐′

( [. . . , ℎ], fold(𝑎𝑐𝑐, 𝑓 )) →𝛿 ( [. . .], fold(𝑎𝑐𝑐′, 𝑓 ), [])

fold-terminator

( [⊗], fold(𝑎𝑐𝑐, 𝑓 )) →𝛿 (⊗, fold(𝑎𝑐𝑐, 𝑓 ), [⊗, 𝑎𝑐𝑐])

Fig. 14. Operational semantics for Flink operators in Flo.
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Map processes elements one by one and passes through the terminator, so it satisfies eager

execution and streaming progress easily. But note that for the fold operator to satisfy streaming

progress, its input must be bounded, otherwise the step that emits the aggregated value when the

input becomes fixed would be illegal.

Now given an unbounded stream, how do we use fold? Flink’s answer is to use windows, where

the aggregation is run over blocks of data defined by timestamp intervals. This idea maps perfectly

to the Flo model, where we can convert an unbounded stream of timestamps-value pairs into a

stream-of-streams (as in Section 5) and then use a nested graph to aggregate over each window.

To implement this windowing operator, we will use the internal state of the operator to store

the values corresponding to the next window. When a timestamp farther than the end of the

current interval is received, we emit the accumulated window. Because the operator uses timestamp

boundaries to determine when to emit inner streams, the inner streams are bounded even though

the outer stream-of-streams is unbounded. We omit detailed proofs for brevity, but this operator

also satisfies eager execution and streaming progress. We can sketch the type and operational

semantics for this operator in Figure 15 (again omitting the partial order for brevity).

window-type

𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 is an amount of time 𝑇 is a timestamp ∀𝑖 𝑡𝑖 is a timestamp ∀𝑖 ⊢ 𝑣𝑖 : 𝐷

⊢𝑂 window(𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙, [(𝑣1, 𝑡1), . . . (𝑣𝑛, 𝑡𝑛)]) : ((S<(D, T)>, 𝑋 ) ↩→ ([(S<D>, 𝐵)], 𝑋 ), ≺
window

)

window-first

( [. . . (𝑣𝑛, 𝑡𝑛)],window(𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙, [])) →𝛿 ( [. . .],window(𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙, [(𝑣𝑛, 𝑡𝑛)]), [])

window

𝑡𝑛 −𝑤𝑡𝑚 ≤ interval

( [. . . (𝑣𝑛, 𝑡𝑛)],window(𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙, [(𝑤1,𝑤𝑡1), . . . , (𝑤𝑚,𝑤𝑡𝑚)])) →𝛿

( [. . .],window(𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙, [(𝑣𝑛, 𝑡𝑛), (𝑤1,𝑤𝑡1), . . . , (𝑤𝑚,𝑤𝑡𝑚)]), [])

window-emit

𝑡𝑛 −𝑤𝑡𝑚 > interval

( [. . . (𝑣𝑛, 𝑡𝑛)],window(𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙, [(𝑤1,𝑤𝑡1), . . . , (𝑤𝑚,𝑤𝑡𝑚)])) →𝛿

( [. . .],window(𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙, [(𝑣𝑛, 𝑡𝑛)]), ( [𝑤1, . . . ,𝑤𝑚], 𝑡𝑟𝑢𝑒))

Fig. 15. Type and operational semantics for the window operator.

To complete our example of how patterns from Flink can be modeled in Flo, we can perform

aggregations over these windows by using a nested graph. We can pass the result of the window

operator into the nest operator defined in Section 5, and use the fold operator inside the nested
graph. Because the nested stream is bounded, this will typecheck and the aggregation will be

appropriately computed for each window.

6.2 LVars
LVars [30] is a language for deterministic parallel programming that uses lattice-based data struc-

tures to ensure determinism. A key insight of LVars is to leverage monotonicity to ensure determin-

ism, by requiring that pieces of state are always updated monotonically, and restricting reads of

the state to threshold queries that check if the state is larger than a given value. We will show that

the essence of LVars can be modeled in Flo as a special collection type, where threshold queries

can be used to safely read from lattice values that are derived from unbounded aggregations.
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First, let us define the collection for an LVar. Consider a lattice defined by a set of values 𝐿, a

bottom value ⊥, and the lattice join operator ⊔. We will define the LVar collection type a tuple of

the lattice value and a boolean flag, where the boolean flag indicates whether the value is fixed or

not. We will use the lattice join for concatenation, and the ⊗ terminator to terminate a collection.

LVar<L> ≜ {(𝑣, true) | 𝑣 ∈ 𝐿} ∪ {(𝑣, false) | 𝑣 ∈ 𝐿}
(𝑣1, false) ++ 𝑣2 = (𝑣1 ⊔ 𝑣2, false)
(𝑣1, true) ++ 𝑣2 = (𝑣1, true)
(𝑣1, false) ++ ⊗ = (𝑣1, true)

Fig. 16. Type semantics and concatenation operator for LVars in Flo.

There are many operators that can produce an LVar from various input collection types. Let us

use ordered sequences as an example. We can define a fold_lattice operator which transforms

each value into a lattice and then applies the lattice join across the sequence. We define the type

and operational semantics for this operator in Figure 17.

fold-lattice-type

⊢ 𝑓 : 𝑇 → 𝑈 𝑈 is a lattice

⊢ fold_lattice(𝑓 ) : (S<T>, 𝑋 ) ↩→ (LVar<U>, 𝑋 )

fold-lattice

𝑣 ≠ ⊗ 𝑓 (𝑣) ⇓ 𝑙
( [..., 𝑣], fold_lattice(𝑓 )) →𝛿 ( [...], fold_lattice(𝑓 ), 𝑙)

fold-lattice-terminated

( [⊗], fold_lattice(𝑓 )) →𝛿 (⊗, fold_lattice(𝑓 ), ⊗)

Fig. 17. Type and operational semantics for the fold_lattice operator.

We omit detailed proofs of the core operator properties for brevity here, but note that the

boundedness of the output is equal to the boundedness of the input. This is because we can

guarantee a terminator on the output when the input will become fixed. In addition, we satisfy

eager execution because we always consume elements from the rightmost side, and concatenation

to the input can only introduce new elements on the left.

Consider a naive attempt to implement an operator that converts an LVar<T> back into an

ordered sequence [T] by generating a stream containing a single value with that LVar:

((𝑣, _), to_sequence) →𝛿 (⊗, to_sequence, [𝑣])
This operator will be illegal because it does not satisfy eager execution. Recall that we are

interested in convergence regardless of whether a delta is introduced before or after the step. If we

introduce a delta that changes the lattice value, the output sequence would be different depending

on this scheduling decision, making the operator non-deterministic. Let’s make another attempt to

implement this operator, where we wait for the LVar to be fixed first:

((𝑣, 𝑡𝑟𝑢𝑒), to_sequence) →𝛿 (⊗, to_sequence, [𝑣])
This operator satisfies eager execution, but now fails to satisfy streaming progress when

instantiated with an unbounded streaming input! If we run the operator on an unfixed input, the

output will be an empty sequence. But if we terminate this input, the output will grow to include the

lattice value, which is illegal because streaming progress mandates that the only change between

these executions should be that the output also becomes fixed, without any changes to its contents.
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A fix is to restrict the typing rules for the operator to only accept bounded inputs, so that the input

is guaranteed to be eventually fixed.

What can we do with unbounded LVars? The fundamental properties of Flo and the original

LVars paper come to the same conclusion: we must use a threshold query instead. We can define an

operator that takes an LVar and a threshold value, and emits the threshold if the input exceeds it.

We list the type and operational semantics for this operator in Figure 18 (omitting partial orders).

lvar-threshold-type

∀𝑖 . 𝑡𝑖 ∈ 𝑈 ∧ ∀𝑖, 𝑗 �𝑘. 𝑖 ≠ 𝑗 ∧ 𝑡𝑖 ⊔ 𝑡 𝑗 = 𝑘

⊢𝑂 thresh(𝑡1, . . .) : ((LVar<U>, 𝑋 ) ↩→ (S<U>, 𝑋 ), ≺
thresh

)

lvar-threshold

𝑣 ⊔ 𝑡𝑖 = 𝑣

((𝑣, _), thresh(𝑡1, . . .)) →𝛿 (⊗, thresh(𝑡1, . . .), 𝑡𝑖 )

lvar-threshold-terminated

((𝑣, 𝑡𝑟𝑢𝑒), thresh(. . .)) →𝛿 (⊗, thresh(. . .), ⊗)

Fig. 18. Type and operational semantics for the threshold operator.

This operator satisfies both eager execution and streaming progress, making it safe to use in a

Flo program. The more general properties required for Flo, which do not involve partial orders

over collection values or any algebraic properties, still map very precisely to the approach taken in

LVars to enable deterministic data processing.

6.3 DBSP
Another point in the streaming language design space comes from the database community.

DBSP [13] introduces a formal model for relational operators that can be incrementally executed

on live updating databases. A key insight of DBSP is that relations with incremental updates can

be modeled as z-sets, where each element in the set has an integer cardinality, such that negative

values correspond to retractions of data. We will show that the essence of DBSP can be modeled in

Flo by using a special collection type for z-sets, where incremental operations over these correspond

to satisfying eager execution.

First, let us define the collection for a z-set in Figure 19. We will define the z-set collection type

as a map of keys to integer cardinalities as well as a boolean flag that indicates that the collection

is fixed. The concatenation operator simply combines the two maps by adding the cardinalities of

matching keys, and the ⊗ terminator makes the collection fixed.

Cardinality Maps:𝑀 = {𝑘1 : 𝑣1, . . .} where 𝑣𝑖 ∈ Z,𝑀 [𝑘] = 0 if 𝑘 ∉ 𝑀

(𝑀1 +𝑀2) [𝑘] = 𝑀1 [𝑘] +𝑀2 [𝑘]
ZSet = {(𝑚, true) |𝑚 ∈ 𝑀} ∪ {(𝑚, false) |𝑚 ∈ 𝑀}

(𝑀1, 𝑓 𝑎𝑙𝑠𝑒) ++𝑀2 = {(𝑀1 +𝑀2, 𝑓 𝑎𝑙𝑠𝑒)}
(𝑀, _) ++ ⊗ = {(𝑀, 𝑡𝑟𝑢𝑒)}

Fig. 19. Collection type and concatenation operator for z-sets in Flo.

In DBSP, inputs to the program are z-sets, and we will take the same approach when mapping

this to Flo. Next, we define operators over z-sets. Let us define map, a general version of projection,

in Figure 20. We omit typing rules for brevity, but the output boundedness is the same as the input.
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map-zset

𝑓 (𝑘1, 𝑣1) ⇓ 𝑣 ′

(({𝑘1 : 𝑣1, . . .}, _),map(𝑓 )) →𝛿

(({. . .}, _),map(𝑓 ), ({𝑘1 : 𝑣 ′}, _))

map-zset-terminated

(({}, 𝑡𝑟𝑢𝑒),map(𝑓 )) →𝛿 (⊗,map(𝑓 ), ⊗)

Fig. 20. Small-step semantics for the map operator.

This operator trivially satisfies streaming progress, because no outputs are gated on termination.

In DBSP, the primary goal is incremental execution: we can introduce additional input and the output

will be updated to the result on the full input. This is exactly the definition of eager execution.
Our operators satisfy this property because they are distributive over the z-set. Consider processing

a key 𝑘1 with cardinality 𝑣1 only to have it re-introduced by a delta with cardinality 𝑣2. If the delta

is applied before the operator, the operator will directly emit a value with cardinality 𝑣1 + 𝑣2. If the

delta is applied after, cardinality 𝑣1 will be emitted, and later the operator will emit 𝑣2 which will

be added together by concatenation.

(𝑀1 ⊲⊳ 𝑀2) [𝑘] = 𝑀1 [𝑘] ·𝑀2 [𝑘]
join-zset

((𝑀′
1
, 𝑠1), (𝑀′2, 𝑠2), ⊲⊳ (𝑀1, 𝑀2)) →𝛿

(({}, 𝑠1), ({}, 𝑠2), ⊲⊳ (𝑀1 +𝑀′1, 𝑀2 +𝑀′2), (𝑀1 ⊲⊳ 𝑀′
2
+𝑀′

1
⊲⊳ 𝑀2 +𝑀′1 ⊲⊳ 𝑀′

2
))

join-zset-terminated

(({}, 𝑡𝑟𝑢𝑒), ({}, 𝑡𝑟𝑢𝑒), ⊲⊳ (_, _)) →𝛿 (⊗, ⊗, ⊲⊳, ⊗)

Fig. 21. Operational semantics for the join operator.

A more interesting operator is the natural join (⊲⊳), which takes two z-sets and produces a new

z-set by joining on a key. First, we define a ⊲⊳ operator on z-sets which joins them by taking the

product of cardinalities of matching keys. To perform an incremental join, we store the z-sets which

have already been processed in the state of the operator. We can then apply the z-set property

(𝑎 + 𝑎′) ⊲⊳ (𝑏 + 𝑏′) = 𝑎 ⊲⊳ 𝑏 + 𝑎′ ⊲⊳ 𝑏 + 𝑎 ⊲⊳ 𝑏′ + 𝑎′ ⊲⊳ 𝑏′. We use this in a sketch for the operational

semantics in Figure 21 (again, omitting type semantics but using only unbounded streams).

Again, what is interesting here is that proving eager execution aligns exactly with the incremental

computation goal in DBSP. In DBSP, proofs of correctness hinge on the join operator being bilinear,

because 𝑎 · (𝑏 + 𝑐) = 𝑎 · 𝑏 + 𝑎 · 𝑐 . This is exactly the property we need to prove eager execution,

because the operator must be distributive over concatenations to the z-set. This is a powerful

demonstration of the flexibility of Flo, as it can precisely capture the semantics of incremental

computation with retractions, a key limitation of approaches like Stream Types [19].

6.4 Putting it Together
What is particularly exciting is that all these case studies fit into the common model of Flo. In

fact, we could unify all three into a single language, since the operators are all composable and

can be used together. For example, we shared the ordered sequence collection between Flink and

LVars, so the operators we defined in both could easily be mixed together to compute a threshold

over windowed aggregates. This shows the power of the abstract approach taken by Flo; we can

capture a wide range of semantics under one roof, while still providing strong guarantees about

the behavior of the system as a whole.
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7 Related Work
Flo builds on the vast bodies of work on streaming language design from both the programming

languages and databases communities. We leverage the insights across both traditional stream

processing and incremental computation to devise a new model for progressive streams.

7.1 Stream Types and Deterministic Dataflow
Themost closely related work to Flo recently is Stream Types [19], which provides a rich type system

that can precisely capture the structure of elements in a stream. Stream Types focus on capturing

ordering invariants, such as the presence of certain elements within bracketing pairs. These fine-

grained types make it possible to prove strong semantic guarantees about the implementation of
operators, such as determinism when operating on prefixes of data.

These properties map well to the eager execution and streaming progress properties of Flo, which

takes a more abstract compositional approach to stream semantics. In this way, Stream Types and

Flo can be complementary, since Stream Types can be used to prove that operators in a Flo language

satisfy the properties required by Flo. Flo’s notion of streams, however, is more general than that

of Stream Types; indeed, one of the key limitations of Stream Types is that they cannot model

incremental computation with retractions, a key feature of DBSP that Flo can capture.

Other work defines streams as monoids [32, 33] and uses monotone operators to ensure de-

terminism. We generalize this approach by relaxing their monotonicity requirements into eager

execution, and by relying on a notion of concatenation that generalizes their monoidal structure.

This enables Flo to be used to model retractions that the monoidal approach cannot capture.

7.2 StreamQuery Languages
“Continuous” query languages over streams have been a topic of recurring interest in database

research since the 1990s. A recent tutorial article overviews the history of that work [14], and

highlights the foundational influence of CQL [8] on language semantics. CQL extends SQL with

operators that map a family of timestamped stream collections (unbounded, in our terminology) to

relations (bounded) and vice-versa; SQL is used as an inner language to map relations to relations.

CQL assumes a totally ordered, timestepped model of execution in which all data for each timestep

is known to be available when that timestep is processed. Like many stream query languages of its

time, CQL does not address delay directly: “Our semantics does not dictate ‘liveness’ of continuous

query output—that issue is relegated to latency management in the query processor [10, 16]”.

The same tutorial also points out various constructs that stream query languages introduced

for tracking progress, including punctuations [43], watermarks [3], heartbeats [41], slack [2], and

frontiers [34]. While some of these are operational (e.g., timeout-based), many fit our framework in

two places: families of collection types that admit reasoning about fixedness (e.g., mixing data and

control messages), and language constructs for extracting bounded “inner” collections.

An additional recurring discussion in these systems relates to the practical issue of “late-arriving

information” or “out of order processing,” in which input values arrive that require a system to

“compensate” for or “retract” previously-emitted output values. As illustrated in Section 6.3, recent

approaches [13, 34] show how these concerns can be made orthogonal to our discussion here by

lifting compensations and their handling into richer collection types and operator algebras.

7.3 Streaming Dataflow Systems
There has been much work on building performant streaming dataflow systems, particularly for

use in analytical workloads. Systems like Samza [36], Storm [24], Flink [15], Heron [29], Beam [31],

and Spark Streaming [45] all provide complete systems for stream dataflow. These systems are
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highly performant, and as a result, they focus on the operational aspects of streaming systems,

such as fault tolerance, scalability, and low-latency processing. As such, many of the contributions

of these systems center on managing persistence of data on distributed nodes and preservation of

deterministic outputs in the face of failures, an operational concern that we abstract away in Flo.

More recent work has focused on batching as a way to improve performance [28, 37], which can

be modeled in Flo using nested streams. All these approaches, however, generally focus on ordered

sequences as a global stream type, rather than allowing programs to mix and match collection

types as in Flo. Although Flo is a theoretical foundation, we believe there is much work to be done

in building a practical streaming system that can leverage the guarantees provided by Flo.

7.4 Reactive, Incremental, and Stream-based Programming
Much work exists on functional reactive programming (FRP), a paradigm in which programs are

continuously re-run (often incrementally) on ever-changing inputs [18, 25–27, 38]. These programs

can be formalized as streams, and are often compiled to a streaming dataflow representation similar

to those we explore in this paper. Of particular interest are papers which reason about avoiding

space-time leaks [26, 27], requiring a property similar to our streaming progress condition.

Other work in this space has focused on the correspondence between LTL and FRP [18, 25, 38],

or have focused on the incrementalization of functional programs [22, 44]. While our work also

reasons about properties like equivalence under re-ordering, eventual termination, and avoiding

space-time leaks, we choose a new, more general formalism both better-suited to our domain and

less opinionated about the definitions of “streams” and “operators.”

Many stream-based languages have precise ideas of how to define both streams and computations

[9, 12, 17, 35, 42]. While much of this work is interested in properties similar to eager execution

and streaming progress, all of it is formalized with a syntax and semantics for a particular language.

In contrast, Flo offers an abstract, general framework for streaming languages, with only enough

constraints to prove our core properties. We believe that Flo provides a basis to build such languages.

An incremental, streaming language of particular interest is Naiad [34], which uses a dataflow

model that supports incremental execution of dataflow with cycles. Our model of nested streams is

inspired by Naiad, which similarly uses special operators to describe how streams are fed into out

of nested loops. In Flo, our collection type for ordered sequences of streams requires inner streams

to be processed in-order, while Naiad allows for “time-travelling” with vector timestamps to allow

modifications to already-processed streams. One could imagine implementing this in Flo using a

specialized collection type and nesting operator for timestamped messages.

Other work in the streaming space focuses on a similar goal of unifying several streaming

semantics under one language [40]. But this work makes limited guarantees about the behavior

of the program, with respect to both correctness and liveness of outputs. Flo provides a similar

general model, but supports compositional proofs of determinism and completeness of outputs.

8 Conclusion
In this paper, we introduced Flo, a parameterized streaming dataflow language that provides strong

guarantees about the behavior of streaming computations. Flo identifies two key properties which

are general yet necessary for streaming programs: streaming progress and eager execution. We

formally model these properties and show that they are preserved across composition. Furthermore,

we showed that Flo supports nested streams and graphs while maintaining the semantic guarantees

of the language. To demonstrate the capabilities of Flo, we showed that Flo can capture a wide range

of streaming semantics, from windowed aggregation in Flink, to monotone thresholds in LVars,

and even incremental computation in DBSP. We believe that Flo provides a powerful foundation

for building streaming systems that can be used to more strongly reason about their guarantees.
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