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1 INTRODUCTION
Promises of better cost and scalability have driven the migration of database systems to the cloud.
Yet, the distributed protocols at the core of these systems, such as 2PC [46] or Paxos [43], are not
designed to scale: when the number of machines grows, overheads often increase and throughput
drops. As such, there has been a wealth of research on developing new, scalable distributed protocols.
Unfortunately, each new design requires careful examination of prior work and new correctness
proofs; the process is ad hoc and often error-prone [2, 35, 51, 53, 57, 62]. Moreover, due to the
heterogeneity of proposed approaches, each new insight is localized to its particular protocol and
cannot easily be composed with other efforts.

This paper offers an alternative approach. Instead of creating new distributed protocols from scratch,
we formalize scalability optimizations into rule-driven rewrites that are correct by construction and
can be applied to any distributed protocol.

To rewrite distributed protocols, we take a page from traditional SQL query optimizations. Prior
work has shown that distributed protocols can be expressed declaratively as sets of queries in
a SQL-like language such as Dedalus [6], which we adopt here. Applying query optimization to
these protocols thus seems like an appealing way forward. Doing so correctly however, requires
care, as the domain of distributed protocols requires optimizer transformations whose correctness
is subtler than classical matters like the associativity and commutativity of join. In particular,
transformations to scale across machines must reason about program equivalence in the face of
changes to spatiotemporal semantics like the order of data arrivals and the location of state.

We focus on applying two fundamental scaling optimizations in this paper: decoupling and par-
titioning, which correspond to vertical and horizontal scaling. We target these two techniques
because (1) they can be generalized across protocols and (2) were recently shown by Whittaker
et al. [63] to achieve state-of-the-art throughput on complex distributed protocols such as Paxos.
While Whittaker’s rewrites are handcrafted specifically for Paxos, our goal is to rigorously define
the general preconditions and mechanics for decoupling and partitioning, so they can be used to
correctly rewrite any distributed protocol.

Decoupling improves scalability by spreading logic across machines to take advantage of additional
physical resources and pipeline parallel computation. Decoupling rewrites data dependencies on
a single node into messages that are sent via asynchronous channels between nodes. Without
coordination, the original timing and ordering of messages cannot be guaranteed once these
channels are introduced. To preserve correctness without introducing coordination, we decouple
sub-components that produce the same responses regardless of message ordering or timing: these
sub-components are order-insensitive. Order-insensitivity is easy to systematically identify in
Dedalus thanks to its relational model: Dedalus programs are an (unordered) set of queries over
(unordered) relations, so the logic for ordering—time, causality, log sequence numbers—is the
exception, not the norm, and easy to identify. By avoiding decoupling the logic that explicitly relies
on order, we can decouple the remaining order-insensitive sub-components without coordination.
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Partitioning improves scalability by spreading state across machines and parallelizing compute, a
technique widely used in query processing [22, 25]. Textbook discussions focus on partitioning data
to satisfy a single query operator like join or group-by. If the next operator downstream requires a
different partitioning, then data must be forwarded or “shuffled” across the network. We would
like to partition data in such a way that entire sub-programs can compute on local data without
reshuffling. We leverage relational techniques like functional dependency analysis to find data
partitioning schemes that can allow as much code as possible to work on local partitions without
reshuffling between operators. This is a benefit of choosing to express distributed protocols in the
relational model: functional dependencies are far easier to identify in a relational language than a
procedural language.

We demonstrate the generality of our optimizations by methodically applying rewrites to three
seminal distributed protocols: voting, 2PC, and Paxos. We specifically target Paxos [59] as it is a
protocol with many distributed invariants and it is challenging to verify [31, 66, 67]. The throughput
of the optimized voting, 2PC, and Paxos protocols scale by 2×, 5×, and 3× respectively, a scale-up
factor that matches the performance of ad hoc rewrites [63] when the underlying language of each
implementation is accounted for and achieves state-of-the-art performance for Paxos.

Our correctness arguments focus on the equivalence of localized, “peephole” optimizations of
dataflow graphs. Traditional protocol optimizations often make wholesale modifications to protocol
logic and therefore require holistic reasoning to prove correctness. We take a different approach.
Our rewrite rules modify existing programs with small local changes, each of which is proven to
preserve semantics. As a result, each rewritten subprogram is provably indistinguishable to an
observer (or client) from the original. We do not need to prove that holistic protocol invariants are
preserved—they must be. Moreover, because rewrites are local and preserve semantics, they can be
composed to produce protocols with multiple optimizations, as we demonstrate in Section 5.2.

Our local-first approach naturally has a potential cost: the space of protocol optimization is limited
by design as it treats the initial implementation as “law”. It cannot distinguish between true protocol
invariants and implementation artifacts, limiting the space of potential optimizations. Nonetheless,
we find that, when applying our results to seminal distributed system algorithms, we easily match
the results of their (manually proven) optimized implementations.

In summary, we make the following contributions:

(1) We present the preconditions and mechanisms for applying multiple correct-by-construction
rewrites of two fundamental transformations: decoupling and partitioning.

(2) We demonstrate the application of these rule-driven rewrites by manually applying them to
complex distributed protocols such as Paxos.

(3) We evaluate our optimized programs and observe 2− 5× improvement in throughput across pro-
tocols with state-of-the-art throughput in Paxos, validating the role of correct-by-construction
rewrites for distributed protocols.

Due to a lack of space, the full precondition, mechanism, and proof of correctness of each rewrite
in this paper can be found in the technical report [16].

2 BACKGROUND
Our contributions begin with the program rewriting rules in Section 3. Naturally, the correctness of
those rules depends on the details of the language we are rewriting, Dedalus. Hence in this section
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Fig. 1. Dataflow diagram for a verifiably-replicated KVS. Edges are labeled with corresponding line numbers;
dashed edges represent asynchronous channels. Each gray bounding box represents a node; select nodes’
dataflows are presented.

we pause to review the syntax and semantics of Dedalus, as well as additional terminology we will
use in subsequent discussion.

Dedalus is a spatiotemporal logic for distributed systems [6]. As we will see in Section 2.3, Dedalus
captures specifications for the state, computation and messages of a set of distributed nodes over
time. Each node (a.k.a. machine, thread) has its own explicit “clock” that marks out local time
sequentially. Dedalus (and hence our work here) assumes a standard asynchronous model in which
messages between correct nodes can be arbitrarily delayed and reordered, but must eventually be
delivered after an infinite amount of time [24].

Dedalus is a dialect of Datalog¬, which is itself a SQL-like declarative logic language that supports
familiar constructs like joins, selection, and projection, with additional support for recursion,
aggregation (akin to GROUP BY in SQL), and negation (NOT IN). Unlike SQL, Datalog¬ has set
semantics.

2.1 Running example
As a running example, we focus on a verifiably replicated key-value store with hash-conflict
detection inspired by [56]. We use this example to explain the core concepts of Dedalus and to
illustrate in Sections 3 and 4 how our transformations can be applied. In Section 5 we turn our
attention to more complex and realistic examples, including Paxos and 2PC. Figure 1 provides a
high level diagram of the example; we explain the corresponding Dedalus code (Listings 1 and 2) in
the next subsection.

The running example consists of a leader node andmultiple storage nodes and allows clients to write
to storage nodes, with the ability to detect concurrent writes. The leader node cryptographically
signs each client message and broadcasts both the message and signature to each storage node. Each
storage node then stores the message and the hash of the message in a local table if the signature is
valid. The storage nodes also calculate the number of unique existing messages in the table whose
hash collides with the hash of the message. The storage nodes then sign the original message and
respond to the leader node. Upon collecting a response from each storage node, if the number of
hash collisions is consistent across responses, the leader creates a certificate of all the responses and
replies to the client. If any two storage nodes report differing numbers of hash collisions, the leader
notifies the client of the inconsistency. We use this simple protocol for illustration, and present
more complete protocols—2PC and Paxos—in Section 5.

2.2 Datalog¬

We now introduce the necessary Datalog¬ terminology, copying code snippets from Listings 1
and 2 to introduce key concepts.
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A Datalog¬ program is a set of rules in no particular order. A rule 𝜑 is like a view definition
in SQL, defining a virtual relation via a query over other relations. A literal in a rule is either a
relation, a negated relation, or a boolean expression. A rule consists of a deduction operator :−
defining a single left-hand-side relation (the head of the rule) via a list of right-hand-side literals
(the body).

Consider Line 3 of Listing 2, which computes hash collisions:
3 collisions(val2,hashed,l,t) :− toStorage(val1,leaderSig,l,t), hash(val1,hashed),

hashset(hashed,val2,l,t)

In this example, the head literal is collisions, and the body literals are toStorage, hash, and
hashset. Each body literal can be a (possibly negated) relation 𝑟 consisting of multiple attributes
𝐴, or a boolean expression; the head literal must be a relation. For example, hashset is a relation
with four attributes representing the hash, message value, location, and time in that order. Each
attribute must be bound to a constant or variable; attributes in the head literal can also be bound
to aggregation functions. In the example above, the attribute representing the message value in
hashset is bound to the variable val2. Positive literals in the body of the rule are joined together;
negative literals are anti-joined (SQL’s NOT IN). Attributes bound to the same variable form an
equality predicate—in the rule above, the first attribute of toStorage must be equal to the first
attribute of hash since they are both bound to val1; this specifies an equijoin of those two relations.
Two positive literals in the same body that share no common variables form a cross-product.
Multiple rules may have the same head relation; the head relation is defined as the disjunction
(SQL UNION) of the rule bodies.

Note how library functions like hash are simply modeled as infinite relations of the form
(input, output). Because these are infinite relations, they can only be used in a rule body if
the input variables are bound to another attribute—this corresponds to “lazily evaluating” the
function only for that attribute’s finite set of values. For example, the relation hash contains the
fact (x, y) if and only if hash(x) equals y.

Relations 𝑟 are populated with facts 𝑓 , which are tuples of values, one for each attribute of 𝑟 . We
will use the syntax 𝜋𝐴 (𝑓 ) to project 𝑓 to the value of attribute 𝐴. Relations with facts stored prior
to execution are traditionally called extensional relations, and the set of extensional relations is
called the EDB. Derived relations, defined in the heads of rules, are traditionally called intensional
relations, and the set of them is called the IDB. Boolean operators and library functions like hash
have pre-defined content, hence they are (infinite) EDB relations.

Datalog¬ also supports negation and aggregations. An example of aggregation is seen in Listing 2
Line 4, which counts the number of hash collisions with the count aggregation:

4 numCollisions(count<val>,hashed,l,t) :− collisions(val,hashed,l,t)

In this syntax, attributes that appear outside of aggregate functions form the GROUP BY list; attributes
inside the functions are aggregated. In order to compute aggregation in any rule 𝜑 , we must first
compute the full content of all relations 𝑟 in the body of 𝜑 . Negation works similarly: if we have a
literal !r(x) in the body, we can only check that r is empty after we’re sure we have computed the
full contents of r(x). We refer the reader to [1, 48] for further reading on aggregation and negation.

2.3 Dedalus
Dedalus programs are legal Datalog¬ programs, constrained to adhere to three additional rules on
the syntax.
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(1) Space and Time in Schema: All IDB relations must contain two attributes at their far right:
location 𝐿 and time 𝑇 . Together, these attributes model where and when a fact exists in the system.
For example, in the rule on Line 3 discussed above, a toStorage message𝑚 and signature 𝑠𝑖𝑔 that
arrives at time 𝑡 at a node with location 𝑎𝑑𝑑𝑟 is represented as a fact toStorage(𝑚, 𝑠𝑖𝑔, 𝑎𝑑𝑑𝑟, 𝑡).

(2) Matching Space-Time Variables in Body: The location and time attributes in all body literals
must be bound to the same variables 𝑙 and 𝑡 , respectively. This models the physical property that
two facts can be joined only if they exist at the same time and location. In Line 3, a toStorage fact
that appears on node 𝑙 at time 𝑡 can only match with hashset facts that are also on 𝑙 at time 𝑡 .

We model library functions like hash as relations that are known (replicated) across all nodes 𝑛 and
unchanging across all timesteps 𝑡 . Hence we elide 𝐿 and 𝑇 from function and expression literals as
a matter of syntax sugar, and assume they can join with other literals at all locations and times.

(3) Space and Time Constraints in Head: The location and time variables in the head of rules
must obey certain syntactic constraints, which ensure that the “derived” locations and times
correspond to physical reality. These constraints differ across three types of rules. Synchronous
(“deductive” [6]) rules are captured by having the same time variable in the head literal as in the
body literals. Having these derivations assigned to the same timestep 𝑡 is only physically possible
on a single node, so the location in the head of a synchronous rule must match the body as well.
Sequential (“inductive” [6]) rules are captured by having the head literal’s time be the successor
(t+1) of the body literals’ times t. Again, sequentiality can only be guaranteed physically on a single
node in an asychronous system, so the location of the head in a sequential rule must match the
body. Asynchronous rules capture message passing between nodes, by having different time and
location variables in the head than the body. In an asynchronous system, messages are delivered at
an arbitrary time in the future. We discuss how this is modeled next.

In an asynchronous rule 𝜑 , the location attribute of the head and body relations in 𝜑 are bound to
different variables; a different location in the head of 𝜑 indicates the arrival of the fact on a new
node. Asynchronous rules are constrained to capture non-deterministic delay by including a body
literal for the built-in delay relation (a.k.a. choose [6], chosen [4]), a non-deterministic function
that independently maps each head fact to an arrival time. The logical formalism of the delay
function is discussed in [4]; for our purposes it is sufficient to know that delay is constrained to
reflect Lamport’s “happens-before” relation for each fact. That is, a fact sent at time 𝑡 on 𝑙 arrives
at time 𝑡 ′ on 𝑙 ′, where 𝑡 < 𝑡 ′. We focus on Listing 2, Line 5 from our running example.

5 fromStorage(l,sig,val,collCnt,l',t') :− toStorage(val,leaderSig,l,t),
hash(val,hashed), numCollisions(collCnt,hashed,l,t), sign(val,sig),
leader(l'), delay((sig,val,collCnt,l,t,l'),t')

This is an asynchronous rule where a storage node 𝑙 sends the count of hash collisions for each
distinct storage request back to the leader 𝑙 ′. Note the l' and t' in the head literal: they are derived
from the body literals leader (an EDB relation storing the leader address) and the built-in delay.
Note also how the first attribute of delay (the function “input”) is a tuple of variables that, together,
distinguish each individual head fact. This allows delay to choose a different t' for every head
fact [4]. The l in the head literal represents the storage node’s address and is used by the leader to
count the number of votes; it is unrelated to asynchrony.

So far, we have only talked about facts that exist at a point in time 𝑡 . State change in Dedalus is
modeled through the existence or non-existence of facts across time. Persistence rules like the
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Listing 1. Hashset leader in Dedalus.
1 signed(val,leaderSig,l,t) :− in(val,l,t), sign(val,leaderSig)
2 toStorage(val,leaderSig,l',t') :− signed(val,leaderSig,l,t), storageNodes(l'),

delay((val,leaderSig,l,t,l'),t')
3 acks(src,sig,val,collCnt,l,t) :− fromStorage(src,sig,val,collCnt,l,t)
4 acks(src,sig,val,collCnt,l,t') :− acks(src,sig,val,collCnt,l,t), t'=t+1
5 numACKs(count<src>,val,collCnt,l,t) :− acks(src,sig,val,collCnt,l,t)
6 certs(cert<sig>,val,collCnt,l,t) :− acks(src,sig,val,collCnt,l,t)
7 outCert(cer,val,collCnt,hashed,l',t') :− certs(ce,val,collCnt,l,t),

numACKs(cnt,val,collCnt,l,t), numNodes(cnt), client(l'),
delay((cer,val,collCnt,hashed,l,t,l'),t')

8 outInconsistent(val,l',t') :− acks(src1,sig1,val,collCnt1,l,t),
acks(src2,sig2,val,collCnt2,l,t), collCnt1 != collCnt2, client(l'),
delay((val,l,t,l'),t')

one below from Line 2 of Listing 2 ensure, inductively, that facts in hashset that exist at time 𝑡
exist at time 𝑡 + 1. Relations with persistence rules—like hashset—are persisted.

2 hashset(hashed,val,l,t') :− hashset(hashed,val,l,t), t'=t+1

2.4 Further terminology
We introduce some additional terminology to capture the rewrites we wish to perform on Dedalus
programs.

We assume that Dedalus programs are composed of separate components 𝐶 , each with a non-
empty set of rules 𝜑 . In our running example, Listings 1 and 2 define the leader component and
the storage component. All the rules of a component are executed together on a single physical
node. Many instances of a component may be deployed, each on a different node. The node at
location addr only has access to facts 𝑓 with 𝜋𝐿 (𝑓 ) = addr, modeling the shared-nothing property
of distributed systems.

We define a rule’s references as the IDB relations in its body; a component references the set
of relations referenced by its rules. For example, the storage component in Listing 2 references
toStorage, hashset, collisions, and numCollisions. A IDB relation is an input of a component
𝐶 if it is referenced in 𝐶 and it is not in the head of any rules of 𝐶; toStorage is an input to the
storage component. A relation that is not referenced in 𝐶 but appears in the head of rules in 𝐶 is
an output of 𝐶; fromStorage is an output of the storage component. Note that this formulation
explicitly allows a component to have multiple inputs and multiple outputs. Inputs and outputs of
the component correspond to asynchronous input and output channels of each node.

Our discussion so far has been at the level of rules; we will also need to reason about individual
facts. A proof tree [1] can be constructed for each IDB fact 𝑓 , where 𝑓 lies at the root of the tree,
each leaf is an EDB or input fact, and each internal node is an IDB fact derived from its children via
a single rule. Below we see a proof tree for one fact in toStorage:

toStorage('hi', 0x7465, b.b.us:5678, 9)

signed('hi', 0x7465, a.b.us:5678, 6)

in('hi', a.b.us:5678, 6) sign('hi', 0x7465)

storageNodes(b.b.us:5678) delay(('hi', 0x7465, a.b.us:5678, 6, b.b.us:5678), 9)

Line 2

Line 1
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Listing 2. Hashset storage node in Dedalus.
1 hashset(hashed,val,l,t') :− toStorage(val,leaderSig,l,t), hash(val,hashed),

verify(val,leaderSig), t'=t+1
2 hashset(hashed,val,l,t') :− hashset(hashed,val,l,t), t'=t+1
3 collisions(val2,hashed,l,t) :− toStorage(val1,leaderSig,l,t), hash(val1,hashed),

hashset(hashed,val2,l,t)
4 numCollisions(count<val>,hashed,l,t) :− collisions(val,hashed,l,t)
5 fromStorage(l,sig,val,collCnt,l',t') :− toStorage(val,leaderSig,l,t),

hash(val,hashed), numCollisions(collCnt,hashed,l,t), sign(val,sig),
leader(l'), delay((sig,val,collCnt,l,t,l'),t')

2.5 Correctness
This paper transforms single-node Dedalus components into “equivalent” multi-component, multi-
node Dedalus programs; the transformations can be composed to scale entire distributed protocols.
For equivalence, we want a definition that satisfies any client (or observer) of the input/output
channels of the original program. To this end we employ equivalence of concurrent histories as
defined for linearizability [33], the gold standard in distributed systems.

We assume that a history 𝐻 can be constructed from any run of a given Dedalus program 𝑃 .
Linearizability traditionally expects every program to include a specification that defines what
histories are "legal". We make no such assumption and we consider any possible history generated
by the unoptimized program 𝑃 to define the specification. As such, the optimized program 𝑃 ′ is
linearizable if any run of 𝑃 ′ generates the same output facts with the same timestamps as some run
of 𝑃 .

Our rewrites are safe over protocols that assume the following fault model: an asynchronous
network (messages between correct nodes will eventually be delivered) where up to 𝑓 nodes can
suffer from general omission failures [52] (they may fail to send or receive some messages). After
optimizing, one original node 𝑛 may be replaced by multiple nodes 𝑛1, 𝑛2, . . .; the failure of any of
nodes 𝑛𝑖 corresponds to a partial failure of the original node 𝑛, which is equivalent to the failure of
𝑛 under general omission.

Due to a lack of space, we omit the proofs of correctness of the rewrites described in Sections 3
and 4. Full proofs, preconditions, and rewrite mechanisms can be found in the appendix of our
technical report [16].

3 DECOUPLING
Decoupling partitions code; it takes a Dedalus component running on a single node, and breaks it
into multiple components that can run in parallel across many nodes. Decoupling can be used to
alleviate single-node bottlenecks by scaling up available resources. Decoupling can also introduce
pipeline parallelism: if one rule produces facts in its head that another rule consumes in its body,
decoupling those rules across two components can allow the producer and consumer to run in
parallel.

Because Dedalus is a language of unordered rules, decoupling a component is syntactically easy:
we simply partition the component’s ruleset into multiple subsets, and assign each subset to a
different node. The result is syntactically legal, but the correctness story is not quite that simple. To
decouple and retain the original program semantics, we must address classic distributed systems
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Fig. 2. Running example after mutually independent decoupling.

challenges: how to get the right data to the right nodes (space), and how to ensure that introducing
asynchronous messaging between nodes does not affect correctness (time).

In this section we step through a progression of decoupling scenarios, and introduce analyses and
rewrites that provably address our concerns regarding space and time. Throughout, our goal is to
avoid introducing any coordination—i.e. extra messages beyond the data passed between rules in
the original program.

General Construction for Decoupling: In all our scenarios we will consider a component 𝐶 at
network location addr, consisting of a set of rules 𝜑 . We will, without loss of generality, decouple𝐶
into two components: 𝐶1 = 𝜑1, which stays at location addr, and 𝐶2 = 𝜑2 which is placed at a new
location addr2. The rulesets of the two new components partition the original ruleset: 𝜑1 ∩ 𝜑2 = ∅
and 𝜑1 ∪ 𝜑2 ⊇ 𝜑 . Note that we may add new rules during decoupling to achieve equivalence.

3.1 Mutually Independent Decoupling
Intuitively, if the component 𝐶1 never communicates with 𝐶2, then running them on two separate
nodes should not change program semantics. We simply need to ensure that inputs from other
components are sent to addr or addr2 appropriately.

Consider the component defined in Listing 1. There is no dataflow between the relations in Lines 1
and 2 and the relations in the remainder of the rules in the component. One possible decoupling
would place Lines 1 and 2 on𝐶1, the remainder of Listing 1 on𝐶2, and reroute fromStoragemessages
from 𝐶1 to 𝐶2, as seen in Figure 2.

We now define a precondition that determines when this rewrite can be applied:

Precondition: 𝐶1 and 𝐶2 are mutually independent.

Recall the definition of references from Section 2.4: a component 𝐶 references IDB relation 𝑟 if
some rule 𝜑 ∈ 𝐶 has 𝑟 in its body. A component 𝐶1 is independent of component 𝐶2 if (a) the two
components reference mutually exclusive sets of relations, and (b)𝐶1 does not reference the outputs
of𝐶2. Note that this property is asymmetric:𝐶2 may still be dependent upon𝐶1 by referencing𝐶1’s
outputs. Hence our precondition requires mutual independence.

Rewrite: Redirection. Because 𝐶2 has changed address, we need to direct facts from any relation
𝑟 referenced by 𝐶2 to addr2. We simply add a “redirection” EDB relation to the body of each rule
whose head is referenced in 𝐶2, which maps addr to addr2, and any other address to itself. For our
example above, we need to ensure that fromStorage is sent to addr2. To enforce this we rewrite
Line 5 of Listing 2 as follows (note variable l'' in the head, and forward in the body):
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Fig. 3. Running example after monotonic decoupling.

5 fromStorage(l,sig,val,collCnt,l'',t') :− toStorage(val,leaderSig,l,t),
hash(val,hashed), numCollisions(collCnt,hashed,l,t), sign(val,sig),
leader(l'), forward(l',l'') delay((l,sig,val,collCnt,l,t,l''),t')

3.2 Monotonic Decoupling
Now consider a scenario in which 𝐶1 and 𝐶2 are not mutually independent. If 𝐶2 is dependent
on 𝐶1, decoupling changes the dataflow from 𝐶1 to 𝐶2 to traverse asynchronous channels. After
decoupling, facts that co-occurred in 𝐶 may be spread across time in 𝐶2; similarly, two facts that
were ordered or timed in a particular way in 𝐶 may be ordered or timed differently in 𝐶2. Without
coordination, very little can be guaranteed about the behavior of a component after the ordering or
timing of facts is modified.

Fortunately, the CALM Theorem [32] tells us that monotonic components eventually produce the
same output independent of any network delays, including changes to co-occurrence, ordering, or
timing of inputs. A component 𝐶2 is monotonic if increasing its input set from 𝐼 to 𝐼 ′ ⊇ 𝐼 implies
that the output set 𝐶2 (𝐼 ′) ⊇ 𝐶2 (𝐼 )1; in other words, each referenced relation and output of 𝐶2 will
monotonically accumulate a growing set of facts as inputs are received over time, independent
of the order in which they were received. The CALM Theorem ensures that if 𝐶2 is shown to be
monotonic, then we can safely decouple 𝐶1 and 𝐶2 without any coordination.

In our running example, the leader (Listing 1) is responsible for both creating certificates from a set of
signatures (Lines 5 to 7) and checking for inconsistent ACKs (Line 8). Since ACKs are persisted, once
a pair is inconsistent, they will always be inconsistent; Line 8 is monotonic. Monotonic decoupling
of Line 8 allows us to offload inconsistency-checking from a single leader to the decoupled “proxy”
as highlighted in yellow in Figure 3.

Precondition: 𝐶1 is independent of 𝐶2, and 𝐶2 ismonotonic.

Monotonicity of a Datalog¬ (hence Dedalus) component is undecidable [40], but effective conser-
vative tests for monotonicity are well known. A simple sufficient condition for monotonicity is
to ensure that (a) 𝐶2’s input relations are persisted, and (b) 𝐶2’s rules do not contain negation or
aggregation. In the technical report we relax each of these checks to be more permissive.

Rewrite: Redirection With Persistence. Note that in this case we may have relations 𝑟 that
are outputs of 𝐶1 and inputs to 𝐶2. We use the same rewrite as in the previous section with one
addition: we add a persistence rule to 𝐶2 for each 𝑟 that is in the output of 𝐶1 and the input of 𝐶2,
guaranteeing that all inputs of 𝐶2 remain persisted.
1There is some abuse of notation here treating𝐶2 as a function from one set of facts to to another, since the facts may be in
different relations. A more proper definition would be based on sets of multiple relations: input and EDB relations at the
input, IDB relations at the output.
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Fig. 4. Running example after functional decoupling.

The alert reader may notice performance concerns. First, 𝐶1 may redundantly resend persistently-
derived facts to 𝐶2 each tick, even though 𝐶2 is persistently storing them anyway via the rewrite.
Second, 𝐶2 is required to persist facts indefinitely, potentially long after they are needed. Solutions
to this problem were explored in prior work [17] and can be incorporated here as well without
affecting semantics.

3.3 Functional Decoupling
Consider a component that behaves like a “map” operator for a pure function 𝐹 on individual facts:
for each fact 𝑓 it receives as input, it outputs 𝐹 (𝑓 ). Surely these should be easy to decouple! Map
operators are monotonic (their output set grows with their input set), but they are also independent
per fact—each output is determined only by its corresponding input, and in particular is not affected
by previous inputs. This property allows us to forgo the persistence rules we introduce for more
general monotonic decoupling; we refer to this special case of monotonic decoupling as functional
decoupling.

Consider again Lines 1 and 2 in Listing 1. Note that Line 1 works like a function on one input: each
fact from in results in an independent signed fact in signed. Hence we can decouple further, placing
Line 1 on one node and Line 2 on another, forwarding signed values to toStorage. Intuitively, this
decoupling does not change program semantics because Line 2 simply sends messages, regardless
of which messages have come before: it behaves like pure functions.

Precondition: 𝐶1 is independent of 𝐶2, and 𝐶2 is functional—that is, (1) it does not contain
aggregation or negation, and (2) each rule body in 𝐶2 has at most one IDB relation.

Rewrite: Redirection. We reuse the rewrite from Section 3.1.

As a side note, recall that persisted relations in Dedalus are by definition IDB relations. Hence
Precondition (2) prevents 𝐶2 from joining current inputs (an IDB relation) with previous persisted
data (another IDB relation)! In effect, persistence rules are irrelevant to the output of a functional
component, rendering functional components effectively “stateless”.

4 PARTITIONING
Decoupling is the distribution of logic across nodes; partitioning (or “sharding”) is the distribution
of data. By using a relational language like Dedalus, we can scale protocols using a variety of
techniques that query optimizers use to maximize partitioning without excessive “repartitioning”
(a.k.a. “shuffling”) of data at runtime.

Unlike decoupling, which introduces new components, partitioning introduces additional nodes
on which to run instances of each component. Therefore, each fact may be rerouted to any of the
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Fig. 5. Running example after partitioning with co-hashing.

many nodes, depending on the partitioning scheme. Because each rule still executes locally on each
node, we must reason about changing the location of facts.

We first need to define partitioning schemes, and what it means for a partitioning to be correct
for a set of rules. Much of this can be borrowed from recent theoretical literature [7, 27, 28, 55].
A partitioning scheme is described by a distribution policy 𝐷 (𝑓 ) that outputs some node address
addr_i for any fact 𝑓 . A partitioning preserves the semantics of the rules in a component if it is
parallel disjoint correct [55]. Intuitively, this property says that the body facts that need to be
colocated remain colocated after partitioning. We adapt the parallel disjoint correctness definitions
to the context of Dedalus as follows:

Definition 4.1. A distribution policy 𝐷 over component 𝐶 is parallel disjoint correct if for any fact
𝑓 of 𝐶 , for any two facts 𝑓1, 𝑓2 in the proof tree of 𝑓 , 𝐷 (𝑓1) = 𝐷 (𝑓2).

Ideally we can find a single distribution policy that is parallel disjoint correct over the component
in question. To do so, we need to partition each relation based on the set of attributes used for
joining or grouping the relation in the component’s rules. Such distribution policies are said to
satisfy the co-hashing constraint (Section 4.1). Unfortunately, it is common for a single relation to
be referenced in two rules with different join or grouping attributes. In some cases, dependency
analysis can still find a distribution policy that will be correct (Section 4.2). If no parallel disjoint
correct distribution policy can be found, we can resort to partial partitioning (Section 4.3), which
replicates facts across multiple nodes.

To discuss partitioning rewrites on generic Dedalus programs, we consider without loss of generality
a component 𝐶 with a set of rules 𝜑 at network location addr. We will partition the data at addr
across a set of new locations addr1, addr2, etc, each executing the same rules 𝜑 .

4.1 Co-hashing
We begin with co-hashing [28, 55], a well studied constraint that avoids repartitioning data. Our
goal is to co-locate facts that need to be combined because they (a) share a join key, (b) share a
group key, or (c) share an antijoin key.

Consider two relations 𝑟1 and 𝑟2 that appear in the body of a rule 𝜑 , with matching variables bound
to attributes 𝐴 in 𝑟1 and corresponding attributes 𝐵 in 𝑟2. Henceforth we will say that 𝑟1 and 𝑟2
“share keys” on attributes 𝐴 and 𝐵. Co-hashing states that if 𝑟1 and 𝑟2 share keys on attributes 𝐴
and 𝐵, then all facts from 𝑟1 and 𝑟2 with the same values for 𝐴 and 𝐵 must be routed to the same
partition.

Note that even if co-hashing is satisfied for individual rules, 𝑟 might need to be repartitioned
between the rules, because a relation 𝑟 might share keys with another relation on attributes𝐴 in one
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rule and 𝐴′ in another. To avoid repartitioning, we would like the distribution policy to partition
consistently with co-hashing in every rule of a component.

Consider Line 8 of Listing 1, assuming it has already been decoupled. Inconsistencies between ACKs
are detected on a per-value basis and can be partitioned over the attribute bound to the variable
val; this is evidenced by the fact that the relation acks is always joined with other IDB relations
using the same attribute (bound to val). Line 2 and Listing 2 Line 5 are similarly partitionable by
value, as seen in Figure 5.

Formally, a distribution policy 𝐷 partitions relation 𝑟 by attribute 𝐴 if for any pair of facts 𝑓1, 𝑓2
in 𝑟 , 𝜋𝐴 (𝑓1) = 𝜋𝐴 (𝑓2) implies 𝐷 (𝑓1) = 𝐷 (𝑓2). Facts are distributed according to their partitioning
attributes.

𝐷 partitions consistently with co-hashing if for any pair of referenced relations 𝑟1, 𝑟2 in rule
𝜑 of 𝐶 , 𝑟1 and 𝑟2 share keys on attribute lists 𝐴1 and 𝐴2 respectively, such that for any pair of
facts 𝑓1 ∈ 𝑟1, 𝑓2 ∈ 𝑟2, 𝜋𝐴1 (𝑓1) = 𝜋𝐴2 (𝑓2) implies 𝐷 (𝑓1) = 𝐷 (𝑓2). Facts will be successfully joined,
aggregated, or negated after partitioning because they are sent to the same locations.

Precondition: There exists a distribution policy 𝐷 for relations referenced by component 𝐶 that
partitions consistently with co-hashing.

We can discover candidate distribution policies through a static analysis of the join and grouping
attributes in every rule 𝜑 in 𝐶 .

Rewrite: Redirection With Partitioning. We are given a distribution policy 𝐷 from the precon-
dition. For any rules in𝐶′ whose head is referenced in𝐶 , we modify the “redirection” relation such
that messages 𝑓 sent to 𝐶 at addr are instead sent to the appropriate node of 𝐶 at 𝐷 (𝑓 ).

4.2 Dependencies
By analyzing Dedalus rules, we can identify dependencies between attributes that (1) strengthen
partitioning by showing that partitioning on one attribute can imply partitioning on another, and
(2) loosen the co-hashing constraint.

For example, consider a relation 𝑟 that contains both an original string attribute Str and its
uppercased value in attribute UpStr. The functional dependency (FD) Str → UpStr strengthens
partitioning: partitioning on UpStr implies partitioning on Str. Formally, relation 𝑟 has a functional
dependency 𝑔 : 𝐴 → 𝐵 on attribute lists 𝐴, 𝐵 if for all facts 𝑓 ∈ 𝑟 , 𝜋𝐵 (𝑓 ) = 𝑔(𝜋𝐴 (𝑓 )) for some
function 𝑔. That is, the values 𝐴 in the domain of 𝑔 determine the values in the range, 𝐵. This
reasoning allows us to satisfy multiple co-hashing constraints simultaneously.

Now consider the following joins in the body of a rule: p(str), r(str, upStr), q(upStr). Co-
hashing would not allow partitioning, because 𝑝 and 𝑞 do not share keys over their attributes.
However, if we know the functional dependency Str → UpStr over 𝑟 , then we can partition 𝑝, 𝑞, 𝑟

on the uppercase values of the strings and still avoid reshuffling. This co-partition dependency
(CD) between the attributes of 𝑝 and 𝑞 loosens the co-hashing constraint beyond sharing keys.
Formally, relations 𝑟1 and 𝑟2 have a co-partition dependency 𝑔 : 𝐴 ↩→ 𝐵 on attribute lists 𝐴, 𝐵 if for
all proof trees containing facts 𝑓1 ∈ 𝑟1, 𝑓2 ∈ 𝑟2, we have 𝜋𝐵 (𝑓1) = 𝑔(𝜋𝐴 (𝑓2)) for some function 𝑔. If
we partition by 𝐵 (the range of 𝑔) we also successfully partition by 𝐴 (the domain of 𝑔).

We return to the running example to see how CDs and FDs can be combined to enable coordination-
free partitioning where co-hashing forbade it. Listing 2 cannot be partitioned with co-hashing
because toStorage does not share keys with hashset in Line 3. No distribution policy can satisfy
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Fig. 6. Running example after partitioning with dependencies.

the co-hashing constraint if there exists two relations in the same rule that do not share keys.
However, we know that the hash is a function of the value; there is an FD hash.1 → hash.2.
Hence partitioning on hash.2 implies partitioning on hash.1. The first attributes of toStorage and
hashset are joined through the attributes of the hash relation in all rules, forming a CD. Let the first
attributes of toStorage and hashset—representing a value and a hash—be 𝑉 and 𝐻 respectively:
a fact 𝑓𝑣 in toStorage can only join with a fact 𝑓ℎ in hashset if hash(𝜋𝑉 (𝑓𝑣)) equals 𝜋𝐻 (𝑓ℎ). This
reasoning can be repeatedly applied to partition all relations by the attributes corresponding the
repeated variable hashed, as seen in Figure 6.

Precondition: There exists a distribution policy 𝐷 for relations 𝑟 referenced in 𝐶 that partitions
consistently with the CDs of 𝑟 .

Assume we know all CDs 𝑔 over attribute sets 𝐴1, 𝐴2 of relations 𝑟1, 𝑟2. A distribution policy
partitions consistently with CDs if for any pair of facts 𝑓1, 𝑓2 over referenced relations 𝑟1, 𝑟2 in
rule 𝜑 of 𝐶 , if 𝜋𝐴1 (𝑓1) = 𝑔(𝜋𝐴2 (𝑓2)) for each attribute set, then 𝐷 (𝑓1) = 𝐷 (𝑓2).

We describe the mechanism for systematically finding FDs and CDs in the technical report.

Rewrite: Identical to Redirection with Partitioning.

4.3 Partial partitioning
It is perhaps surprising, but sometimes additional coordination can actually help distributed proto-
cols (like Paxos) scale.

There exist Dedalus components that cannot be partitioned even with dependency analysis. If the
non-partitionable relations are rarely written to, it may be beneficial to replicate the facts in those
relations across nodes so each node holds a local copy. This can support multiple local reads in
parallel, at the expense of occasional writes that require coordination.

We divide the component 𝐶 into 𝐶1 and 𝐶2, where relations referenced in 𝐶2 can be partitioned
using techniques in prior sections, but relations referenced in 𝐶1 cannot. In order to fully partition
𝐶 , facts in relations referenced in 𝐶1 must be replicated to all nodes and kept consistent so that
each node can perform local processing. To replicate those facts, inputs that modify the replicated
relations are broadcasted to all nodes.

Coordination is required in order to maintain consistency between nodes with replicated facts. Each
node orders replicated inputs by buffering other inputs when replicated facts 𝑓 arrive, only flushing
the buffer after the node is sure that all other nodes have also received 𝑓 . Knowledge of whether a
node has received 𝑓 can be enforced through a distributed commit or consensus mechanism.

Precondition: 𝐶1 is independent of 𝐶2 and both behave like state machines.
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Fig. 7. Throughput/latency comparison between distributed protocols before and after rule-driven rewrites.

We define “state machines” and the rewrites for partial partitioning in the technical report.

5 EVALUATION
We will refer to our approach of manually modifying distributed protocols with the mechanisms
described in this paper as rule-driven rewrites, and the traditional approach of modifying distributed
protocols and proving the correctness of the optimized protocol as ad hoc rewrites.

In this section we address the following questions:

(1) How can rule-driven rewrites be applied to foundational distributed protocols, and how well do
the optimized protocols scale? (Section 5.2)

(2) Which of the ad hoc rewrites can be reproduced via the application of (one or more) rules, and
which cannot? (Section 5.3)

(3) What is the effect of the individual rule-driven rewrites on throughput? (Section 5.4)

5.1 Experimental setup
All protocols are implemented as Dedalus programs and compiled to Hydroflow [54], a Rust dataflow
runtime for distributed systems. We deploy all protocols on GCP using n2-standard-4 machines
with 4 vCPUs, 16 GB RAM, and 10 Gbps network bandwidth, with one machine per Dedalus node.

We measure throughput/latency over one minute runs, following a 30 second warmup period. Each
client sends 16 byte commands in a closed loop. The ping time between machines is 0.22ms. We
assume the client is outside the scope of our rewrites, and any rewrites that requires modifying the
client cannot be applied.

5.2 Rewrites and scaling
We manually apply rule-driven rewrites to scale three fundamental distributed protocols—voting,
2PC, and Paxos. We will refer to our unoptimized implementations as BaseVoting, Base2PC,
and BasePaxos, and the rewritten implementations as ScalableVoting, Scalable2PC, and
ScalablePaxos. In general, we will prepend the word “Base” to any unoptimized implemen-

tation, “Scalable” to any implementation created by applying rule-driven rewrites, and “ ” to any
implementation in Dedalus. We measure the performance of each configuration with an increasing
set of clients until throughput saturates, averaging across 3 runs, with standard deviations of
throughput measurements shown in shaded regions. Since the minimum configuration of Paxos
(with 𝑓 = 1) requires 3 acceptors, we will also test voting and 2PC with 3 participants.

For decoupled-and-partitioned implementations, we measure scalability by changing the number
of partitions for partitionable components, as seen in Figure 7. Decoupling contributes to the
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throughput differences between the unoptimized implementation and the 1-partition configuration.
Partitioning contributes to the differences between the 1, 3, and 5 partition configurations.

These experimental configurations demonstrate the scalability of the rewritten protocols. They do
not represent the most cost-effective configurations, nor the configurations that maximize through-
put. We manually applied rewrites on the critical path, selecting rewrites with low overhead, where
we suspect the protocols may be bottlenecked. Across the protocols we tested, these bottlenecks
often occurred where the protocol (1) broadcasts messages, (2) collects messages, and (3) logs to
disk. These bottlenecks can usually be decoupled from the original node, and because messages are
often independent of one another, the decoupled nodes can then be partitioned such that each node
handles a subset of messages. The process of identifying bottlenecks, applying suitable rewrites,
and finding optimal configurations may eventually be automated.

Voting. Client payloads arrive at the leader, which broadcasts payloads to the participants, collects
votes from the participants, and responds to the client once all participants have voted. Multiple
rounds of voting can occur concurrently. BaseVoting is implemented with 4 machines, 1 leader
and 3 participants, achieving a maximum throughput of 100,000 commands/s, bottlenecking at the
leader.

We created ScalableVoting from BaseVoting through Mutually Independent Decoupling, Func-
tional Decoupling, and Partitioning with Co-hashing. Broadcasters broadcast votes for the leader;
they are decoupled from the leader through functional decoupling. Collectors collect and count
votes for the leader; they are decoupled from the leader through mutually independent decou-
pling. The remaining “leader” component only relays commands to broadcasters. All components
except the leader are partitioned with co-hashing. The leader cannot be partitioned since that
would require modifying the client to know how to reach one of many leader partitions. With 1
leader, 5 broadcasters, 5 partitions for each of the 3 participants, and 5 collectors, the maximum
configuration for ScalableVoting totals 26 machines, achieving a maximum throughput of 250,000
commands/s—a 2× improvement over the baseline.

2PC (with Presumed Abort). The coordinator receives client payloads and broadcasts voteReq to
participants. Participants log and flush to disk, then reply with votes. The coordinator collects votes,
logs and flushes to disk, then broadcasts commit to participants. Participants log and flush to disk,
then reply with acks. The coordinator then logs and replies to the client. Multiple rounds of 2PC can
occur concurrently. Base2PC is implemented with 4 machines, 1 coordinator and 3 participants,
achieving a maximum throughput of 30,000 commands/s, bottlenecking at the coordinator.

We created Scalable2PC from Base2PC similarly through Mutually Independent Decoupling,
Functional Decoupling, and Partitioning with Co-hashing. Vote Requesters are functionally decoupled
from coordinators: they broadcast voteReq to participants. Committers and Enders are decoupled
from coordinators through mutually independent decoupling. Committers collect votes, log and
flush commits, then broadcast commit to participants. Enders collect acks, log, and respond to
the client. The remaining “coordinator” component relays commands to vote requesters. Each
participant is mutually independently decoupled into Voters and Ackers. Participant Voters log,
flush, then send votes; Participant Ackers log, flush, then send acks. All components (except the
coordinator) can be partitioned with co-hashing. With 1 coordinator, 5 vote requesters, 5 ackers
and 5 voters for each of the 3 participant, 5 committers, and 5 enders, the maximum configuration
of Scalable2PC totals 46 machines, achieving a maximum throughput of 160,000 commands/s—a
5× improvement.
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Paxos. Paxos solves consensus while tolerating up to 𝑓 failures. Paxos consists of 𝑓 + 1 proposers
and 2𝑓 + 1 acceptors. Each proposer has a unique, dynamic ballot number; the proposer with the
highest ballot number is the leader. The leader receives client payloads, assigns each payload a
sequence number, and broadcasts a p2a message containing the payload, sequence number, and
its ballot to the acceptors. Each acceptor stores the highest ballot it has received and rejects or
accepts payloads into its log based on whether its local ballot is less than or equal to the leader’s.
The acceptor then replies to the leader via a p2b message that includes the acceptor’s highest ballot.
If this ballot is higher than the leader’s ballot, the leader is preempted. Otherwise, the acceptor has
accepted the payload, and when 𝑓 + 1 acceptors accept, the payload is committed. The leader relays
committed payloads to the replicas, which execute the payload command and notify the clients.
BasePaxos is implemented with 8 machines—2 proposers, 3 acceptors, and 3 replicas (matching

BasePaxos in Section 5.3)—tolerating 𝑓 = 1 failures, achieving a maximum throughput of 50,000
commands/s, bottlenecking at the proposer.

We created ScalablePaxos from BasePaxos through Mutually Independent Decoupling, (Asym-
metric)2 Monotonic Decoupling, Functional Decoupling, Partitioning with Co-hashing, and Partial
Partitioning with Sealing3. P2a proxy leaders are functionally decoupled from proposers and broad-
cast p2amessages. P2b proxy leaders collect p2bmessages and broadcast committed payloads to the
replicas; they are created through asymmetric monotonic decoupling, since the collection of p2b
messages is monotonic but proposers must be notified when the messages contain a higher ballot.
Both can be partitioned on sequence numbers with co-hashing. Acceptors are partially partitioned
with sealing on sequence numbers, replicating the highest ballot across partitions, necessitating
the creation of a coordinator for each acceptor. With 2 proposers, 3 p2a proxy leaders and 3 p2b
proxy leaders for each of the 2 proposers, 1 coordinator and 3 partitions for each of the 3 acceptors,
and 3 replicas, totalling 29 machines, ScalablePaxos achieves a maximum throughput of 150,000
commands/s—a 3× improvement, bottlenecking at the proposer.

Across the protocols, the additional latency overhead from decoupling is negligible.

Together, these experiments demonstrate that rule-driven rewrites can be applied to scale a variety
of distributed protocols, and that performance wins can be found fairly easily via choosing the
rules to apply manually. A natural next step is to develop cost models for our context, and integrate
into a search algorithm in order to create an automatic optimizer for distributed systems. Standard
techniques may be useful here, but we also expect new challenges in modeling dynamic load and
contention. It seems likely that adaptive query optimization and learning could prove relevant here
to enable autoscaling [20, 58].

5.3 Comparison to ad hoc rewrites
Our previous results show apples-to-apples comparisons between naive Dedalus implementations
and Dedalus implementations optimized with rule-driven rewrites. However they do not quantify
the difference between Dedalus implementations optimized with rule-driven rewrites and ad hoc
optimized protocols written in a more traditional procedural language. To this effect, we compare
our scalable version of Paxos to Compartmentalized Paxos [63]. We do this for two reasons: (1)
Paxos is notoriously hard to scale manually, and (2) Compartmentalized Paxos is a state-of-the-art

2Asymmetric decoupling is defined in the technical report. It applies when we decouple 𝐶 into 𝐶1 and 𝐶2, where 𝐶2 is
monotonic, but𝐶2 is independent of𝐶1.
3Partitioning with sealing is defined in the technical report. It applies when a partitioned component originally sent a
batched set of messages that must be recombined across partitions after partitioning.
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Fig. 8. The common path taken by CompPaxos and ScalablePaxos, assuming 𝑓 = 1 and any partitionable
component has 2 partitions. The acceptors outlined in red represent possible quorums for leader election.

Fig. 9. Throughput/latency comparison between rule-driven and ad hoc rewrites of Paxos.

implementation of Paxos based, among other optimizations, on manually applying decoupling and
partitioning.

To best understand the merits of scalability, we choose not to batch client requests, as batching
often obscures the benefits of individual scalability rewrites.

5.3.1 Throughput comparison. Whittaker et al. created Scala implementations of Paxos (BasePaxos)
and Compartmentalized Paxos (CompPaxos). Since our implementations are in Dedalus, we first
compare throughputs of the Paxos implementations between the two languages to establish a
baseline. Following the nomenclature from Section 5.2, implementations in Dedalus are prepended
with , and implementations in Scala by Whittaker et al. are not.

BasePaxos was reported to peak of 25,000 commands/s with 𝑓 = 1 and 3 replicas on AWS in
2021 [63]. As seen Figure 9, we verified this result in GCP using the same code and experimental
setup. Our Dedalus implementation of Paxos— BasePaxos—in contrast, peaks at a higher 50,000
commands/s with the same configuration as BasePaxos. We suspect this performance difference is
due to the underlying implementations of BasePaxos in Scala and BasePaxos in Dedalus, compiled
to Hydroflow atop Rust. Indeed, our deployment of CompPaxos peaked at 130,000 commands/s, and
our reimplementation of Compartmentalized Paxos in Dedalus ( CompPaxos) peaked at a higher
160,000 commands/s, a throughput improvement comparable to the 25,000 command throughput
gap between BasePaxos and BasePaxos.

Note that technically, CompPaxos was reported to peak at 150,000 commands/s, not 130,000.
We deployed the Scala code provided by Whittaker et al. with identical hardware, network, and
configuration, but could not replicate their exact result.
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We now have enough context to compare the throughput between CompPaxos and ScalablePaxos;
their respective architectures are shown in Figure 8. CompPaxos achieves maximum throughput
with 20 machines: 2 proposers, 10 proxy leaders, 4 acceptors (in a 2 × 2 grid), and 4 replicas. We
compare CompPaxos and ScalablePaxos using the same number of machines, fixing the number
of proposers (for fault tolerance) and replicas (which we do not decouple or partition). Restricted
to 20 machines, ScalablePaxos achieves the maximum throughput with 2 proposers, 2 p2a proxy
leaders, 3 coordinators, 3 acceptors, 6 p2b proxy leaders, and 4 replicas. All components are kept
at minimum configuration—with only 1 partition—except for the p2b proxy leaders, which are
the throughput bottleneck. ScalablePaxos then scales to 130,000 commands/s, a 2.5× throughput
improvement over BasePaxos. Although CompPaxos reports a 6× throughput improvement over
BasePaxos from 25,000 to 150,000 commands/s in Scala, reimplemented in Dedalus, it reports a 3×
throughput improvement between CompPaxos and BasePaxos, similar to the 2.5× throughput
improvement between ScalablePaxos and BasePaxos. Therefore we conclude that the throughput
improvements of rule-driven rewrites and ad hoc rewrites are comparable when applied to Paxos.

We emphasize that our framework cannot realize every ad hoc rewrite in CompPaxos (Figure 8).
We describe the differences between CompPaxos and ScalablePaxos next.

5.3.2 Proxy leaders. Figure 8 shows that CompPaxos has a single component called “proxy leader”
that serves the roles of two components in ScalablePaxos: p2a and p2b proxy leaders. Unlike p2a
and p2b proxy leaders, proxy leaders in CompPaxos can be shared across proposers. Since only 1
proposer will be the leader at any time, CompPaxos ensures that work is evenly distributed across
proxy leaders. Our rewrites focus on scaling out and do not consider sharing physical resources
between logical components. Moreover, there is an additional optimization in the proxy leader
of CompPaxos. CompPaxos avoids relaying p2bs from proxy leaders to proposers by introducing
nack messages from acceptors that are sent instead. This optimization is neither decoupling nor
partitioning and hence is not included in ScalablePaxos.

5.3.3 Acceptors. CompPaxos partitions acceptors without introducing coordination, allowing each
partition to hold an independent ballot. In contrast, ScalablePaxos can only partially partition
acceptors and must introduce coordinators to synchronize ballots between partitions, because our
formalism states that the partitions’ ballots together must correspond to the original acceptor’s
ballot. Crucially, CompPaxos allows the highest ballot held at each partition to diverge while
ScalablePaxos does not, because this divergence can introduce non-linearizable executions that

remain safe for Paxos, but are too specific to generalize. We elaborate more on this execution in the
technical report.

Despite its additional overhead, ScalablePaxos does not suffer from increased latency because the
overhead is not on the critical path. Assuming a stable leader, p2b proxy leaders do not need to
forward p2bs to proposers, and acceptors do not need to coordinate between partitions.

5.3.4 Additional differences. CompPaxos additionally includes classical Paxos optimizations such
as batching, thriftiness [47], and flexible quorums [36], which are outside the scope of this paper as
they are not instances of decoupling or partitioning. These optimizations, combined with the more
efficient use of proxy leaders, explain the remaining throughput difference between CompPaxos
and ScalablePaxos.

5.4 On the Benefit of Individual Rewrites
In Figure 10, we examine each rewrite’s scaling potential. To create a consistent throughput
bottleneck, we introduce extra computation via multiple AES encryptions. When decoupling, the
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Fig. 10. The scalability gains provided by each rewrite, in isolation.

programmust always decrypt the message from the client and encrypt its output.When partitioning,
the program must always encrypt its output. When decoupling, we always separate one node
into two. When partitioning, we always create two partitions out of one. Thus maximum scale
factor of each rewrite is 2×. To determine the scaling factors, we increased the number of clients by
increments of two for decoupling and three for partitioning, stopping when we reached saturation
for each protocol.

Briefly, we study each of the individual rewrites using the following artificial protocols:

• Mutually Independent Decoupling: A replicated set where the leader decrypts a client request,
broadcasts payloads to replicas, collects acknowledgements, and replies to the client (encrypting
the response), similar to the voting protocol. We denote this base protocol as R-set. We decouple
the broadcast and collection rules.

• Monotonic Decoupling: An R-set where the leader also keeps track of a ballot that is potentially
updated by each client message. The leader attaches the value of the ballot at the time each
client request is received to the matching response.

• Functional Decoupling: The same R-set protocol, but with zero replicas. The leader attaches the
highest ballot it has seen so far to each response. It still decrypts client requests and encrypts
replies as before.

• Partitioning With Co-Hashing: A R-set.

• PartitioningWith Dependencies: A R-set where each replica records the number of hash collisions,
similar to our running example.

• Partial Partitioning: A R-set where the leader and replicas each track an integer. The leader’s
integer is periodically incremented and sent to the replicas, similar to Paxos. The replicas attach
their latest integers to each response.

The impact on throughput varies between rewrites due to both the overhead introduced and the
underlying protocol. Note that of our 6 experiments, the first two are the only ones that add a
network hop to the critical path of the protocol and rely on pipelined parallelism. The combination
of networking overhead and the potential for imperfect pipelined parallelism likely explain why
they achieve only about 1.7× performance improvement. In contrast, the speedups for mutually
independent decoupling and the different variants of partitioning are closer to the expected 2×.
Nevertheless, each rewrite improves throughput in isolation as shown in Figure 10.
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6 RELATEDWORK
Our results build on rich traditions in distributed protocol design and parallel query processing. The
intent of this paper was not to innovate in either of those domains per se, but rather to take parallel
query processing ideas and use them to discover and evaluate rewrites for distributed protocols.

6.1 Manual Protocol Optimizations
There are many clever, manually-optimized variants of distributed protocols that scale by avoiding
coordination, e.g. [3, 11, 23, 39, 49, 63]. These works rely on intricate modifications to underlying
protocols like consensus, with manual (and not infrequently buggy [53]) end-to-end proofs of
correctness for the optimized protocol. In contrast, this paper introduces a rule-driven approach to
optimization that is correct by construction, with proofs narrowly focused on small rewrites.

We view our work here as orthogonal to most ad hoc optimizations of protocols. Our rewrites are
general and can be applied correctly to results of the ad hoc optimization. In future work it would
be interesting to see when and how the more esoteric protocols cited above might benefit from
further optimization using the techniques in this paper.

Our work was initially inspired by the manually-derived Compartmentalized Paxos [63], from
which we borrowed our focus on decoupling and partitioning. Our work does not achieve all the
optimizations of Compartmentalized Paxos (Section 5.3), but it achieves the most important ones,
and our results are comparable in performance.

There is a long-standing research tradition of identifying commonalities between distributed
protocols that provide the same abstraction [8, 10, 29, 30, 37, 60, 61, 64, 65]. In principle, optimizations
that apply to one protocol can be transferred to another, but this requires careful scrutiny to
determine if the protocols fit within some common framework.We attack this problem by borrowing
from the field of programming languages. The language Dedalus is our “framework”; any distributed
protocol expressed in Dedalus can benefit from our rewrites via a mechanical application of the
rules. Although our general rewrites cannot cover every possible optimization a programmer can
envision, they can be applied effectively.

6.2 ParallelQuery Processing and Dataflow
A key intuition of our work is to rewrite protocols using techniques from distributed (“shared-
nothing”) parallel databases. The core ideas go back to systems like Gamma [22] and GRACE [25]
in the 1980s, for both long-running “data warehouse” queries and transaction processing work-
loads [21]. Our work on partitioning (Section 4) adapts ideas from parallel SQL optimizers, notably
work on auto-partitioning with functional dependencies, e.g. [70]. Traditional SQL research focuses
on a single query at a time. To our knowledge the literature does not include the kind of decoupling
we introduce in Section 3.

Big Data systems (e.g., [19, 38, 68]) extended the parallel query literature by adding coordination
barriers and other mechanisms for mid-job fault tolerance. By contrast, our goal here is on modest
amounts of data with very tight latency constraints. Moreover, fault tolerance is typically implicit
in the protocols we target. As such we look for coordination-freeness wherever we can, and avoid
introducing additional overheads common in Big Data systems.

There is a small body of work on parallel stream query optimization. An annotated bibliography
appears in [34]. Widely-deployed systems like Apache Flink [15] and Spark Streaming [69] offer
minimal insight into query optimization.

Proc. ACM Manag. Data, Vol. 2, No. N1 (SIGMOD), Article 2. Publication date: February 2024.



2:22 David C. Y. Chu et al.

Parallel Datalog goes back to the early 1990s (e.g. [26]). A recent survey covers the state of the
art in modern Datalog engines [41], including dedicated parallel Datalog systems and Datalog
implementations over Big Data engines. The partitioning strategies we use in Section 4 are discussed
in the survey; a deeper treatment can be found in the literature cited in Section 4 [7, 27, 28, 55].

6.3 DSLs for Distributed Systems
We chose the Dedalus temporal logic language because it was both amenable to our optimization
goals and we knew we could compile it to high-performance machine code via Hydroflow. Temporal
logics have also been used for verification of protocols—most notably Lamport’s TLA+ language [44],
which has been adopted in applied settings [50]. TLA+ did not suit our needs for a number of reasons.
Most notably, efficient code generation is not a goal of the TLA+ toolchain. Second, an optimizer
needs lightweight checks for properties (FDs, monotonicity) in the inner loop of optimization; TLA+
is ill-suited to that case. Finally, TLA+ was designed as a finite model checker : it provides evidence of
correctness (up to 𝑘 steps of execution) but no proofs. There are efforts to build symbolic checkers
for TLA+ [42], but again these do not seem well-suited to our lightweight setting.

Declarative languages like Dedalus have been used extensively in networking. Loo, et al. surveyed
work as of 2009 including the Datalog variants NDlog and Overlog [45]. As networking DSLs,
these languages take a relaxed “soft state” view of topics like persistence and consistency. Dedalus
and Bloom [5, 18] were developed with the express goal of formally addressing persistence and
consistency in ways that we rely upon here. More recent languages for software-defined networks
(SDNs) include NetKAT [9] and P4 [14], but these focus on centralized SDN controllers, not
distributed systems.

Further afield, DAG-based dataflow programming is explored in parallel computing (e.g., [12, 13]).
While that work is not directly relevant to the transformations we study here, their efforts to
schedule DAGs in parallel environments may inform future work.

7 CONCLUSION
This is the first paper to present general scaling optimizations that can be safely applied to any
distributed protocol, taking inspiration from traditional SQL query optimizers. This opens the door
to the creation of automatic optimizers for distributed protocols.

Ourwork builds on the ideas of Compartmentalized Paxos [63], which “unpacks” atomic components
to increase throughput. In addition to our work on generalizing decoupling and partitioning via
automation, there are additional interesting follow-on questions that we have not addressed here.
The first challenge follows from the separation of an atomic component into multiple smaller
components: when one of the smaller components fails, others may continue responding to client
requests. While this is not a concern for protocols that assume omission failures, additional checks
and/or rewriting may be necessary to extend our work to weaker failure models. The second
challenge is the potential liveness issues introduced by the additional latency from our rewrites and
our assumption of an asynchronous network. Protocols that calibrate timeouts assuming a partially
synchronous network with some maximum message delay may need their timeouts recalibrated.
This can likely be addressed in practice using typical pragmatic calibration techniques.
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